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Quantum Field Theory
Quantum field theory is a theoretical framework that tries to combine quantum mechanics, classical field theory 
and special relativity.

1920s – first developments.

A problem: all observables seemed infinite.

~1947-1950 – first solutions of the infinity problem, first meaningful results that agree with experiments, a 
formulation of quantum electrodynamics.
Electron’s g-factor (magnetic moment / predicted by classical physics) ≈
Hydrogen energy level shift.
The efforts of R. Feynman, J. Schwinger, H. Bethe, S. Tomonaga and others.

These lectures is about a rigorous mathematical proof of the ultraviolet divergences cancellation and related 
questions. Understanding mathematical arguments is the most important!

Electric field (Coulomb’s law):

Energy density:

Total electromagnetic energy:

Infinities of ultraviolet type exist in classical electrodynamics:

A point charge and its electric field
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Feynman diagrams: an instrument of obtaining 
Lorentz-covariant results from quantum field theory

An example from quantum electrodynamics

Internal and external lines.

Each line has a 4-momentum.

External momenta are on the mass shell: 
p2=m2 

Straight lines are electrons/positrons, wiggly 
lines are photons.

Arrow directions show the charge motion; 
p

0
>0 for electrons, p

0
<0 for positrons.

4-momentum is conserved at each point.

It gives a contribution to the particle scattering 
amplitude as an expansion in the coupling 
constant (with reservations).

Particles are free (do not interact) at infinity (t→±∞)

IMPORTANT NOTE!
The derivation of Feynman diagrams from first principles is not completely rigorous.
The procedure of obtaining results from Feynman diagrams is also not fully justified.
The theory of handling infinities is developed mostly for Feynman diagrams (not for equations of motion and so on).



 

[4] Sergey Volkov   sergey.volkov@partner.kit.edu 

QED Feynman rules
QED Lagrangian density (in Feynman gauge): 

The metric tensor g
μν

 
corresponds to (+1,-1,-1,-1)
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Feynman diagrams: 
a basis of independent loops and integration

q
1
, q

2
, q

3
, q

4 
are linear combinations of external 

momenta (satisfying the momentum conservation law).

k
1
, k

2
 are loop momenta.

u
1
, u

2
, u

3
, u

4
 are Dirac spinors of external particles.

A basis of independent loops can be chosen differently.
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Issues related to Feynman diagrams
(an incomplete list)

● Integrals with Minkowsky space propagators don’t exist.
● +i0 in the propagator denominators.
● Ultraviolet divergences.
● Infrared divergences.
● Mixed ultraviolet-infrared divergences.
● Overlapping divergences.
● Since the integrals written directly don’t exist, a regularization is 

required.
● Physical parameters must be correctly defined (≠bare parameters).
● Diagrams must be amputated (to avoid division by zero).
● External line “wave function” renormalization (which is not 

connected directly with the renormalization of physical parameters).
● An emission of an infinite number of soft photons should be taken 

into account (otherwise the probability is zero).
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Issues related to Feynman diagrams:
Minkowsky-space integrals don’t exist

The integral ∫f(x)dx exists if and only if ∫|f(x)|dx is finite.

The Riemann rearrangement theorem: if f
n
→0 as n→∞ and Σ|f

n
|=∞ then any sum can be obtained by 

permutation of f
n
. 

The integral for zero external momenta

does not exist, because in the area

the function absolute value > 1/(3ε)3, but the area measure is of order 
∫rdr=∞.

These integrals don’t exist for any external momenta and masses.A Feynman diagram of a scalar theory

The corresponding Euclidean integral

is absolutely convergent.
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Issues related to Feynman diagrams:
a regularization of Minkowsky space integrals

Ways to regularize Minkowsky space integrals:

● Additional regularization parameter:

or simultaneously (W. Zimmermann’s approach):

● Integrate first over k
0
 and only then over k.

● Wick rotation: rotate the contour of the integration over k
0
, put it to the 

imaginary axis (by Cauchy’s theorem). All integrals becomes Euclidean. In 
some cases it makes the denominators separated from 0.

● Schwinger and Feynman parameters.
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● “Causal prescription”.
● We should replace +i0 with +iε or a more complicated expression, ε→+0.
● We have some freedom in ordinary cases. For example, we can write +iε in one 

propagator and +2iε in another one, without affecting the final result (provided that all 
other regularization issues are resolved).

● A deformation of the (multidimensional) contour of the loop momenta k
1
,…,k

L
 in 4L-

dimensional complex plane helps to avoid ε (if there are no IR divergences).
     Not only the Wick rotation...
     The Cauchy-Poincaré theorem (a multidimensional generalization of the Cauchy 
theorem and a complex-variable generalization of the change of variables theorem)
              [B. V. Shabat, Introduction to Complex Analysis, P. II. Functions of several variables, Chapter II.5]
              [D. E. Soper, Phys. Rev. D 62, 014009 (2000), Appendix]
              [S. Borowka, J. Carter, G. Heinrich, Comp. Phys. Comm. 184, Is. 2, 396-408 (2013), Section 2.2]

● However, if we have infrared divergences, the freedom ceases to exist, one needs to be 
more careful. A non-zero photon mass is usually introduced in QED:

After the non-zero photon mass is introduced, the freedom with +iε appears; thus, the limit 
ε→+0 should be taken first, and only after that we can take λ→+0.

Issues related to Feynman diagrams:
+i0 in the propagator denominators
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Issues related to Feynman diagrams:
ultraviolet divergences

Approximated UV analysis 
(ignoring cancellations in the denominators):

Really, the situation is not so bad (if we regularize it properly), because k and -k cancel 
each other, but nevertheless both terms are UV divergent!

Analogously,

The UV divergence of Σ
1
 is multiplied by a new UV divergence. UV divergences can be nested!

Moreover, the proportional to p+k UV-divergent term of Σ
1
 increases the UV degree!
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Issues related to Feynman diagrams:
regularization of ultraviolet divergences

The reason of UV divergences: a point-like field interaction.
Really, we don’t know how the interaction works at very small distances.

Regularization: a parameter ε→+0 that summarizes our unknowledge of the 
interaction structure at small distances and high energies. As ε→+0, observable 
physical parameters like particle masses tend to ∞. A renormalization is required 
(changing the bare parameters to make the physical parameters constant). If this 
growth is not too fast (like log ε), we can suppose that the “natural regularization” 
leads to only a small shift of the physical parameters (relative to the bare 
parameters).

Ideal regularization: a finite radius of interaction, smoothness (gaussian-like or 
something like this).
Unfortunately, it does not work at all (it violates everything and gives catastrophic 
irremovable infinities). 

One can say that different regularizations differ in intermediate values, but give the 
same final result. However, this statement is meaningless: there is no general 
definition of a regularization; and of course, there is no proof that all regularizations 
are equivalent.
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Issues related to Feynman diagrams:
regularization of UV divergences (examples)

● Cut-off like regularizations. Loop momenta space in integrals is restricted in some way.
Good: the nearest to the ideal regularization.
Bad: it violates the symmetries like the Lorentz covariance and gauge invariance (it depends on the realization).

● The Pauli-Villars regularization. 
The propagator are replaced with linear combinations with different masses:

M
j
→∞. The coefficients and masses can be adjusted to remove all UV divergences.

Good: it preserves the Lorentz covariance.
Good: it is not too far from the ideal regularization.
Bad: it violates the gauge invariance.

● A modified Pauli-Villars regularization, in which each term has the same mass M
j
 in all propagators of a fermion loop (in QED).

Good: it preserves the gauge invariance (in QED, in the form of Ward-Takahashi identities) together with the Lorentz covariance.
Bad: subdiagrams behave differently relative to the same graphs as whole diagrams (thus, its physical interpretation is very doubtful as well 
as the possibility of usage for proving properties).
    [N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Chapter IV (Nauka, Moscow, 1984; Wiley, New 
York, 1980)]

● Dimensional regularization (UV divergences are regularized together with the IR ones). 
D=4+ε is the space-time dimensionality.
Good: it preserves the gauge invariance, Lorentz covariance.
Good: In many cases it is possible to manipulate with intermediate infinite values as with finite values.
Good: It is very useful for calculations.
Bad: in most of cases, there is no D for which the corresponding integral exists. A secondary regularization, analytical continuation or other 
constructions are required to define it.
Bad: in most of cases, IR and UV divergences are inseparable and look similarly.
Bad: it has nothing in common with the ideal regularization. An analytical continuation in complex plane is inevitable. Its physical 
interpretation is very doubtful. A very serious grounds and a justification is required.

● Dimensional regularization combined with a non-zero photon mass. 
Good: all good properties of dimensional regularization.
Good: UV and IR divergences can be studied separately.
Bad: all bad properties of dimensional regularization (except the unexistence of the integral for all D).
Bad: it is difficult to extend it beyond QED.
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Issues related to Feynman diagrams:
overlapping ultraviolet divergences

Direct UV power counting shows that the whole diagram abcd has an UV divergence, but 
also the subdiagrams abc and bcd have it.

For nested divergences one can imagine that the Feynman amplitudes can be correctly 
defined (without UV divergences) order by order; the lower-order correctly defined 
Feynman amplitudes are substituted to the higher-order integrals.

However, there is no hope that this is possible, if we have overlapping UV divergences.

Even if a divergence elimination procedure is developed, the question arises about the 
physical interpretation of this procedure. However, this is solvable in a natural way!
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Issues related to Feynman diagrams:
infrared divergences

A physical situation: (p
1
)2=(p

2
)2=m2.

All propagator denominators tends to 0 as k→0.
An accurate power counting shows that we have a divergence when k→0.
A non-zero photon mass helps: k2+i0   --->   k2-λ2+i0  

A widespread misconception: all physical IR divergences are of logarithmic type

(p
1
)2=(p

2
)2=m2

k
2
≠0 is fixed

k
1
→0

In this case, we have a power-type IR divergence!
To make it logarithmic, a correct mass 
renormalization is required! 
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Issues related to Feynman diagrams:
handling infrared divergences

The probability that only a finite number of photons is emitted always equals 
0. This leads to infinities in the perturbation series terms, like

A finite sensitivity of the photon detector must be taken into account.

Two regularization parameters: λ is the photon mass, Λ is the photon detector 
sensitivity.

The renormalization also plays a role in the cancellation of IR divergences.
For example, there are physical observables that don’t depend on the photon 
detector sensitivity (like the magnetic moment); in these cases, the 
elimination of IR divergences is directly connected to the renormalization, as 
well as it is for the UV divergences.
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Issues related to Feynman diagrams:
mixed infrared-ultraviolet divergences

Σ(p) is UV-divergent.

If (p
1
)2=(p

2
)2=m2, all denominators in the formula for Γ

μ
(p

1
,p

2
) tends to 0; an IR divergence enhances 

the UV divergence of Σ(p).

IR and UV divergences can’t be separated!
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Issues related to Feynman diagrams:
amputation and external leg renormalization

not amputated Feynman diagram

Full electron propagator:
    

          S(p)=
Full photon propagator:
    

      D
μν

(p)=

Renormalization constants are extracted from full propagators:

If external momenta are on the mass shell ((p
1
)2=m2, (p

2
)2=0), a division by zero occurs in not amputated diagrams.

  

A diagram is amputated if it does not have an internal line that separates one external line from the others.
  

LSZ prescription: the amputated Feynman amplitude should be multiplied by (Z
2
)a/2(Z

3
)b/2, where a and b are the 

numbers of external fermion and photon lines (in QED). LSZ is supposed to be explained by particle dressing. 
Amputated diagrams are useful for calculations.
  

Not amputated diagrams have sense only if all external lines are the continuations of internal lines. In this case, one 
should consider slightly off-shell external momenta, take the corresponding residue and multiply by (Z

2
)-a/2(Z

3
)-b/2. 

Not amputated diagrams are useful for proving gauge invariance (especially in non-abelian theories).
   

All kinds of diagrams require external leg renormalization!
Gauge invariance exists only after the external leg renormalization!
Z

2
 and Z

3
 are UV-divergent in most cases. Z

2
 is also IR-divergent!

   

In C- or P-violating theories, Z
2
 are different for left and right parts. In CP-violating theories, Z

2
 can be independent 

for adjoint fields.
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UV divergences: the status
● The cancellation of UV divergences has to do with the renormalization of the 

Largangian constants.
● Feynman diagrams – is a hard-won instrument of obtaining Lorentz-covariant 

results for particle scattering problems from quantum field theory.
● Dealing with Feynman diagrams has a lot of issues. New definitions are required 

to make the corresponding integrals existing; these definitions have no physical 
grounds; they are based on an experience. Moreover, the derivation of Feynman 
diagrams from the first principles is also not fully justified.

● Another way is to abandon Feynman diagrams. However, in this case, the situation 
becomes much more complicated. One has to deal with an infinite-dimensional 
space. Currently all approaches that are not based on Feynman diagrams (like 
lattice calculations) work only in those cases when they are demonstrably 
equivalent to Feynman diagrams.

● Feynman diagrams work only for particle scattering problems. Sometimes it can 
be generalized to some physical observables beyond scattering problems, but only 
with serious reservations. Currently there is no general theory of renormalization.

● However, an experience shows that Feynman diagrams are suitable for obtaining 
very precise physical observable values.
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Dealing with UV divergences and BPHZ: the history

● A procedure of dealing with UV divergences in Feynman diagrams was in general terms formulated by 
F. J. Dyson and A. Salam in 1949-1951.
        [F. J. Dyson, Phys. Rev. 75, 1736 (1949)]
        [A. Salam, Phys. Rev. 84, 426 (1951)]
A technique of working with overlapping divergences was developed.
A connection with the physical renormalization was explained.
However, these results were too far from correct mathematical formulations.

● This procedure was formulated as a mathematical theorem by N. N. Bogoliubov and O. Parasiuk in 
1957. Bogoliubov’s R-operation is a generalization of the construction of F. J. Dyson and A. Salam.
        [N. N. Bogoliubov and O. S. Parasiuk, On the Multiplication of the causal function in the quantum theory of fields, Acta Math. 97, 227 (1957)]

        The ideas:
        1) to use the Schwinger parameters:
        2) to subtract all UV divergences directly in Schwinger parametric space;
        3) to prove the integrals finiteness by giving an upper bound on the absolute value of the 
integrands.
The proof had a serious mistake.
Moreover, the title of the paper was misleading…
However, this consideration raised the hope that quantum field theory has a meaning and can be 
rigorously examined. Moreover, the way was showed…

● The mistakes were corrected by K. Hepp in 1966.
        [K. Hepp, Commun. Math. Phys. 2, 301 (1966)]
The general three ideas are the same.

● W. Zimmermann demonstrated in 1969 that the UV divergences can be subtracted directly in 
momentum space.
        [W. Zimmermann, Commun. Math. Phys. 15, 208 (1969)]
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A misleading title of 
N. N. Bogoliubov’s and O. S. Parasiuk’s paper

N. N. Bogoliubov and O. S. Parasiuk, On the Multiplication of the causal function in the quantum 
theory of fields, Acta Math. 97, 227 (1957)

In German: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder.

The idea comes from Feynman diagrams in coordinate representation. In this representation, the 
Feynman amplitudes are obtained as integrals of the form

The points x
1
, x

2
,…, x

n
 correspond to the vertexes of the Feynman diagram.

D
j
(x) are the propagators in coordinate space.

The idea of N. N. Bogoliubov and O. S. Parasiuk: the propagators D
j
(x) are not well defined around 

x=0 as well as their products around the vectors (x
1
,x

2
,…,x

n
) in which some of x

j
 coincide.

However, it is very important that this “redefinition” works only for scattering matrixes. 

For example, if we introduce a smooth function g(x) = the intensity of switching on the interaction, the 
integral turns into

In this case, the whole theory crashes down! (it works only when g→1)
However, the propagators and their multiplications remain the same.
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The BPHZ theorem: two parts
1.[not fully correct] Reduction of a physical observable (with some 

reservations) to the sum of integrals like

Each step of the reduction has a logic, but it is not fully correct (and can’t 
be correct).
This includes the proof that this reduction is equivalent to a renormalization 
of the Lagrangian constants.

2.[rigorous] The proof that each of these integrals is finite.
(rigorous theorems is a great rarity in quantum field theory)



 

[22] Sergey Volkov   sergey.volkov@partner.kit.edu 

Quantum field theory works very good!

Despite all its flaws in logic, quantum field theory works with a very high 
precision!

Electron’s g-factor:
      2.00231930436321(46)

It includes:
      QED corrections up to the 10-th order
      Electroweak corrections
      Hadronic corrections
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Motivation: understanding the mathematical 
reasoning is very important!

These theorems themselves are incomplete (from the physical point of view) 
and useless in physics. However, understanding the underlying reasoning is 
very useful. It gives a strategic advantage!

● [FOUNDATIONS] The foundations of quantum field theory have serious 
problems with logic. A situation is possible that it should be completely 
remade basing on entirely different principles. The mechanism of how the 
cancellation of divergences works in current theories can serve as a good 
hint!

● [CALCULATIONS] Understanding the structure of divergences and their 
cancellation gives a freedom in the development of calculation procedures. 
Higher precisions, more complicated processes are needed… Existing 
methods often fail on current computers due to different reasons.
A scientist not clamped in dimensional regularization has a great 
advantage!
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The most important discovery in physics in the 
beginning of the 20th century
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?
Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?
Quantum entanglement?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?
Quantum entanglement?
Einstein-Podolsky-Rosen paradoxes?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?
Quantum entanglement?
Einstein-Podolsky-Rosen paradoxes?
Space-time curvature?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?
Quantum entanglement?
Einstein-Podolsky-Rosen paradoxes?
Space-time curvature?
Topological space-time paradoxes?

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?
Quantum entanglement?
Einstein-Podolsky-Rosen paradoxes?
Space-time curvature?
Topological space-time paradoxes?

NO.

Quantization?
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The most important discovery in physics in the 
beginning of the 20th century

Relativity?
Wave-particle duality?

Quantum indeterminism?
The Heisenberg uncertainty principle?
The quantum observer effect?
An absence of trajectories of microobjects?
Quantum entanglement?
Einstein-Podolsky-Rosen paradoxes?
Space-time curvature?
Topological space-time paradoxes?

NO.

The most important is: COMPUTATIONAL COMPLEXITY.

Quantization?
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Motivation: the computation complexity of real world 
processes at the foundamental level is huge

● Full analysis of theories and equations is impossible.
● Scientists try to invent more simple theories with a “partial logic” and to 

compare them with experiments.
● Some of these “partially logical” theories become successful due to 

different reasons: there is a natural selection of scientific ideas, theories and 
scientists.

● Since the beginning of the 20th century, theoretical physics evolves through 
a direct “Darwinian” natural selection; it gives a lot of byproducts...
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Motivation and jokes: the byproducts of the 
“Darwinian” natural selection in theoretical physics

● Ignoring mathematical consistency saves time and therefore leads to a win! Theories with only an imitation of logic 
survive!

● On the other hand, any attempts to put things in order with mathematical consistency require a colossal amount of 
time and resources and therefore lead to catastrophic loss.

● After a few generations the situation with logical consistency becomes catastrophic and absurd.
● A situation is possible that the theory will be completely revised basing on entirely different principles. In this case, 

all the success of the current theories should be transferred to these principles. A partitipation in this process 
requires a very deep understanding of the foundations!

Levels of mathematical rigour:

0. Correct.

1. Correct in general, but some accurate proofs are required like the theorems of existence 
and uniqueness.
Example: the differential equation
has a solution f(x)=0, but also another solution f(x)=x2.

2. A serious reconstruction of definitions and proofs is required.
Examples: 1-1+1-1+1-1+…. = 1/2
                  1+2+3+4+… = -1/12

3.                        , but works!

4. Incorrect.

quantum field theory
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Motivation and jokes: 
tactical and strategic win in theoretical physics

To obtain a tactical gain:
● Ignore all issues related to mathematical consistency.
● Always use ‘’mass destruction’’ techniques like dimensional regularization.
● Always take on the most frontier and complicated problems (no one will 

notice that you fail).
● If you don’t understand something, say that this is well-understood.
● Be pragmatic: if some question can’t lead to a publication, don’t waste your 

time on discussions about it.

To obtain a strategic success:
● Understand the foundations, how the infinities work and cancel.
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Motivation and jokes: 
survival bias in theoretical physics

The problems 
scientists work on 
and have difficulties

Mathematical 
consistency, the structure 
of infinities
(“not interesting”)

The literature in theoretical physics 
makes an illusion that the problems 
related to mathematical consistency are 
not interesting, solved a long time ago, 
or this apparent inconsistency is a part of 
nature.

However, all the literature is created by 
survivors!

One who take on too difficilt tasks and 
tries to solve them honestly does not 
survive: he/she is unable to make 
publications, to demonstrate success, to 
create a scientific school and to have 
followers.



 

[42] Sergey Volkov   sergey.volkov@partner.kit.edu 

Motivation and jokes: the qualities that a scientist 
need for building a career in theoretical physics

Good:
● an ability not to notice gaps in logic (sincerely)
● arrogance (“it is trivial”, “it is well understood”)
● an ability to stick to difficult “frontier” problems
● a slippery character (as a protection against criticism)
● sociability, teamwork
● friendliness
● rapidity
● stamina, performance
● shallowness of thinking
● nonverbal communication expertise
● cunningness, deceitfulness
● akting skills
● an ability to manipulate people and weave intrigues

Bad:
● deep thinking
● honesty
● an ability to distinguish correct and incorrect reasoning
● determination to bring things to an end
These are exactly the qualities for the strategic win!
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Motivation and jokes: 
mathematics, experimental and theoretical physics

the necessity of verifiable experiments

the necessity of rigorous proofs

honesty

the range of scientific disciplines

mathematics theoretical physics experimental physics
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Motivation and jokes: the distribution of the honesty 
of theoretical physicists

Number
of
theoretical
physicists

Honesty

detectable
cheaters

honest
scientists
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Motivation and jokes: 
the attempts to make theoretical physics clear

Number
of
theoretical
physicists

Honesty

detectable
cheaters

honest
scientists

You:

attack
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Motivation and jokes: the attempts to make 
theoretical physics clear (situation #1)

Number
of
theoretical
physicists

Honesty

detectable
cheaters
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Motivation and jokes: the attempts to make 
theoretical physics clear (situation #2)

Number
of
theoretical
physicists

Honesty

detectable
cheaters

honest
scientists

You:

attack

attack

attack

protect

protect

attack



 

[48] Sergey Volkov   sergey.volkov@partner.kit.edu 

Motivation and jokes: 
a better way
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem
● Conclusions
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General ideas of handling UV divergences:
the outline

● Introduction
● General ideas of handling UV divergences

- recognition of divergences
- subtraction of divergences
- the relationship between divergence elimination and renormalization

● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem
● Conclusions
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General ideas of handling UV divergences:
UV degree of divergence

Γ is a Feynman diagram.
Vertex(Γ) = the set of all vertices in Γ.
Int(Γ) = the set of all internal lines of Γ.
Ext(Γ) = the set of all external lines of Γ.
Loop(Γ) = |Int(Γ)|-|Vertex(Γ)|+1 = the number of independent loops in Γ.
Each vertex v has its polynomial P

v
.

Each line l (internal or external) also has its polynomial P
l
 (for convenience we assume that the 

external line polynomial is the same as the polynomials of the internal line of the same type, although 
it is never used in Feynman amplitudes).
Lines(v) = the set of all lines (internal and external incident to the vertex v).

The UV degree of divergence:

The euclidean Feynman integral written directly behaves at ∞ as ∫rω(Γ)-1dr. It diverges if ω(Γ)≥0.

For each vertex we define:

The UV of divergence can be expressed through ω
v 
and the properties of the external lines:
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General ideas of handling UV divergences:
renormalizable and not renormalizable theories

The diagram Γ is divergent if the UV degree of divergence ω(Γ)≥0.

A theory is called renormalizable, if ω
v
≤0 for all possible vertexes (in this case, only a finite number of 

the external line configurations may lead to a divergence). A formal renormalizability does not mean 
that the theory is renormalizable from the physical point of view (the counterterms can violate the 
needed symmetries, for example).

In quantum electrodynamics, chromodynamics: ω
v
=0 (if we take a good gauge).

In Standard Model: ω
v
≤0 (but not always = 0).

Divergent diagrams in QED (N
f 
and N

γ
 are the numbers of external fermions and photons):

   N
f
=0, N

γ
=1 (does not exist due to the Furry theorem: we can just ignore these diagrams)

   N
f
=0, N

γ
=2 (exists, requires a renormalization) [ω=2]

   N
f
=0, N

γ
=3 (does not exist due to the Furry theorem: we can just ignore these diagrams)

   N
f
=0, N

γ
=4 (exists in diagrams, but is cancelled in the final result) [ω=0]

   N
f
=2, N

γ
=0 (exists, requires a renormalization) [ω=1]

   N
f
=2, N

γ
=1 (exists, requires a renormalization) [ω=0]
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General ideas of handling UV divergences:
the divergence subtraction

An example: a hypothetical scalar 1-loop self-energy Feynman integral in Euclidean space:

The UV degree of divergence ω=0. We have a logarithmic divergence.

An observation: p does not play a role when k is large. Thus, Σ(0) contains all the information about 
the UV behavior of Σ(p).

This can be demonstated by the direct subtraction in momentum space:

Since k2-(p+k)2=-p2-2kp, the integral is finite. 

The putting of the subtraction under the integral sign is incorrect from the mathematical point of 
view. It should be considered as a definition!

The replacement of Σ(p) with Σ(p)-Σ(0) for each subdiagram of this type everywhere in Feynman 
diagrams is equivalent to the situation when we allow to use a special vertex instead of subdiagrams 
of this type ==> a counterterm in the Lagrangian.
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General ideas of handling UV divergences:
the subtraction of stronger and nested divergences

If the UV degree of divergence ω>0, the Taylor expansion around 0 should 
be subtracted:

It introduces also counterterm vertices with momenta polynomials into 
Feynman diagrams.

Note. If ω=1, the UV divergence remains logarithmic (because k and -k 
cancel each other in the most divergent term). However, the linear 
expansion around 0 also needs to be subtracted.

Nested divergences can also be subtracted in the same way: the replacement 
should be applied sequentially from smaller to larger subdiagrams.
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General ideas of handling UV divergences:
a note about the momentum conservation law

If we have a Feynman amplitude 

and want to take the Taylor expansion of it, we have to take into account that p
1
,

…,p
n
 satisfy the energy conservation law and therefore choose a basis of n-1 

elements.

An example of an expansion up to the 1-th order: 

For obtaining a counterterm vertex, one should express it through p
1
, p

2
, p

3
 . It is 

ambiguous. In this case, it would be better to express the Feynman rules for 
counterterm vertices through symmetric multilinear forms on p

1
+...+p

n
=0. It should 

be taken into account that different Lagrangian densities can be equivalent at the 
level of Lagrangians. It is better to choose first a basis at the level of Lagrangians.
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General ideas of handling UV divergences:
overlapping divergences

The replacements like

in each UV-divergent subdiagram work if we have non-intersecting or nested UV-divergent subgraphs.

But what if the subdiagrams are overlapping?
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General ideas of handling UV divergences:
overlapping divergences

Zimmermann’s forest formula helps!
  
A forest is a set of subdiagrams of a diagram, each of them are non-intersecting (as sets of vertices) or 
nested.

A subdiagram includes all lines connecting its vertexes (having both ends on its vertexes).

We always consider sets containing at least one line.

The operation that removes all UV divergences:

F is the set of all forests of  UV-divergent 1-particle irreducible subdiagrams of the diagram.
1-particle irreducible = removing each line does not break the connectivity.

M
G
 replaces the Feynman amplitude of G with its Taylor expansion around 0 up to the degree ω(G), 

where ω(G) is the UV degree of divergence of G (only extracts, not subtracts).
The replacements are performed from smaller to larger subgraphs.

1 - M
abc 

- M
bcd 

- M
abcd 

+ M
abcd

M
abc 

+ M
abcd

M
bcd

Similar to the inclusion-exclusion principle...
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General ideas of handling UV divergences:
overlapping divergences and Zimmermann’s forest formula

F is the set of all forests of  UV-divergent 1-particle irreducible subdiagrams of the diagram.

M
G
 replaces the Feynman amplitude of G with its Taylor expansion around 0 up to the degree ω(G), 

where ω(G) is the UV degree of divergence of G (only extracts, not subtracts).
The replacements are performed from smaller to larger subgraphs.

If there are no overlapping subgraphs, it is equivalent to 

where G
1
,G

2
,…,G

n
 are all 1-particle irreducible UV-divergent subdiagrams of the diagram (it works as 

the subtraction of the Taylor expansion for each of these subdiagrams).

In the general case, the terms with overlapping subgraphs should be excluded.



 

[59] Sergey Volkov   sergey.volkov@partner.kit.edu 

General ideas of handling UV divergences:
a misunderstanding about overlapping divergences

An example from φ4 theory ( L = (1/2)[∂μφ∂
μ
φ-m2φ2]-(λ/24)φ4 ):

G
1
 and G

2
 overlap means that

The sets of vertexes, not lines, are considered.
For example, the sets ab and bc overlap, but their sets of lines don’t intersect.

The forest formula is:
1 - M

ab
 - M

bc
 - M

abc
 + M

abc
M

ab
 + M

abc
M

bc

Note. The set abc is 1-particle irreducible, although it looks reducible.
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General ideas of handling UV divergences:
Zimmermann’s forest formula and BPHZ

F is the set of all forests of  UV-divergent 1-particle irreducible subdiagrams of the diagram.

M
G
 replaces the Feynman amplitude of G with its Taylor expansion around 0 up to the degree ω(G), 

where ω(G) is the UV degree of divergence of G (only extracts, not subtracts).
The replacements are performed from smaller to larger subgraphs.

● Firstly the procedure was formulated as a recurrence relation.
    [A. Salam, Phys. Rev. 84, 426 (1951)]
R-operation:
    [N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 (1957)]

● The forest formula is a solution of the recurrence relations. It is not so difficult, and it was 
obtained by different authors. Traditionally, it is called “Zimmermann’s forest formula”.
    [O. I. Zavialov and B. M. Stepanov, Yad. Fys. 1, 922 (1965), in Russian]
    [W. Zimmermann, Commun. Math. Phys. 15, 208 (1969)]

● The forest formula is more convenient for proving the divergence cancellation. The 
recurrence relations are more useful for some applications.

● We will use the forest formula as a formulation of the BPHZ procedure.
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General ideas of handling UV divergences:
questions about Zimmermann’s forest formula

F is the set of all forests of  UV-divergent 1-particle irreducible subdiagrams of the diagram.

M
G
 replaces the Feynman amplitude of G with its Taylor expansion around 0 up to the degree ω(G), 

where ω(G) is the UV degree of divergence of G (only extracts, not subtracts).
The replacements are performed from smaller to larger subgraphs.

Questions:
● Why only 1-particle irreducible subdiagrams?
● How to define the subtraction correctly taking into account Minkowsky-space 

propagators and so on?
● How to prove that it removes all UV divergences?
● What has this to do with physics?
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General ideas of handling UV divergences: why are only 
1-particle irreducible subdiagrams in the forest formula?

1-particle irreducible = removing each line does not break the connectivity

ab and cd are UV-divergent and 1-particle irreducible.
abcd, abc, bcd are UV-divergent, but not 1-particle irreducible (bc is a bridge).

● In principle, the inclusion of connected not 1-particle irreducible subdiagrams to the forest formula 
is correct. 

● However, this inclusion is superfluous: 
1) it is not needed for the divergence elimination, because the bridge momenta are uniquely 
determined by the external momenta (no integration);
2) it subtracts nothing due to the same reason (after the 1-particle irreducible components had 
already been subtracted).

● If the forest formula is modified for the physical renormalization, the division-by-zero problem 
occurs (as well as in the case of not amputated diagrams with on-shell external momenta).

● Also, a problem can occur with a modified subtraction that the replacement of a subdiagram with 
the corresponding counterterm vertex changes the amputatedness: the forest formula is not 
equivalent to the introduction of counterterms for amputated diagrams.
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General ideas of handling UV divergences:
Zimmermann’s forest formula and physics

The application of the forest formula to each Feynman diagram is equivalent to the introduction of 
counterterms into the Lagrangian (but only after summation over all Feynman diagrams).

internal part

external part

a hierarchy of subdiagrams in a forest

Let us consider one forest f={G
1
,…,G

n
} in one 

diagram.
  
G

1
,…,G

k
 are maximal (with respect to inclusion) 

elements of f.
   
External part – the part of the Feynman diagram 
outside G

1
,…,G

k
 (G

1
,…,G

k
 are replaced with the 

special vertices).
   
Internal part – the structure inside G

j 
,
 
j=1,…,k (the 

corresponding subdiagram and the inner elements of 
f). Each internal part gives a momentum polynomial.

The internal part of one G
j
 (j=1,…,k) forms the contribution to the counterterm. The set of all these 

contributions (with coefficients) depends only on the subgraph to which it is placed (as well as the 
possibility to place it there).

If we draw a diagram with counterterm vertexes, each of this vertexes can be expanded to a forest 
part. After summation over all possible expansions, we obtain the coefficient C

1
C

2
...C

k 
, where C

j
 

corresponds to the counterterm vertex j and is determined by the type of this vertex.
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One have to prove that the forest formula is equivalent to the introduction of counterterms taking into account symmetry 
coefficients.

It is convenient to suppose that all vertexes of the diagram are enumerated: 1,2,…,N. External lines of the same type are 
ordered; for each vertex v, the lines of same type incident to v are ordered. The coefficient of the diagram contribution is 
(1/N!).

If we take one term of the forest formula, the largest (with respect to inclusion) vertex subsets to which operators is applied 
are V

1
,….,V

k
 . To make a correspondence with counterterm diagrams and a diagram with counterterm vertices, we will 

consider the diagram with subtractions together with vertices                                     called the main vertices. After the 
introduction, each term exists in |V

1
|×...×|V

k
| copies. Thus, the coefficient is 1/(|V

1
|...|V

k
|N!).

The counterterm diagrams are extracted (with all subdiagram subtractions) from V
j
 keeping the vertex order and line orders 

corresponding to vertexes. The diagram with counterterm vertices is obtained by removing all vertexes that are in V
j
 but not 

equal v
j
 (keeping the vertex order and by moving all the lines to v

j
).

The object obtained from the diagram contains:
● The diagram with counterterm (special) vertices (without subtractions); special vertices don’t have orders of lines.
● The counterterm diagrams (with subtractions); the diagrams don’t have orders of external lines.
● The correspondence between special vertices and counterterm diagrams.
● The correspondence between special vertex lines and external lines of the counterterm diagrams.

Each object is calculated N!/[(|V
1
|-1)!...(|V

k
|-1)!(N-|V

1
|-...-|V

k
|+k)] times. Thus, the coefficient of the object is 

1/[|V
1
|!...|V

k
|!(N-|V

1
|-...-|V

k
|+k)!]. It equals the product of the diagram coefficients. Thus, everything works.

Fermion and sign issues should also be resolved.

General ideas of handling UV divergences:
Zimmermann’s forest formula and physics

To be more accurate with symmetry coefficients…
ERROR: it works only without a requirement that a subdiagram contains all lines with both ends in 
its set of vertices. These definitions are equivalent in each diagram, see in the BPHZ proof part.
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General ideas of handling UV divergences:
a recurrence relation for obtaining counterterms

Each counterterm coefficient is treated perturbatively:
   C

j
=C

j1
α1+C

j2
α2+C

j3
α3+...,

α is the coupling constant.

The coefficients C
jk
 are obtained sequentially (ordered by k):

● Draw all Feynman diagrams of the needed type and degree 
(in α), with counterterm vertices; the degrees (in α) of the 
used counterterms is also calculated; use only the 
counterterms of degree <k.

● Perform the summation.
● Apply the operator -M.
● Enjoy!

No complicated combinatorial constructions like the forest formula are required!

However, this procedure requires a regularization allowing to manipulate infinite intermediate values.

Adding finite values to the counterterm coefficients is also allowed at each step!

Note. In general, arbitrary adding finite values to the counterterms is not allowed (it can lead to a 
divergence). 
The adding is possible only step-by-step, when the previously modified counterterms are taken into 
account in the Feynman diagrams.

The counterterms for obtaining counterterms are 
determined with the same procedure (but at earlier steps)
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics

- subtraction and counterterms
- physical conditions
- the in-place renormalization
- the relationship between forests and physics
- a freedom in the subtraction procedure

● Formulations in terms of finite integrals
● The proof of the BPHZ theorem
● Conclusions
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Renormalization of quantum electrodynamics:
general ideas of using the forest formula

Lagrangian density with a gauge fixing term:

ξ is a parameter of gauge fixing.

The algorithm:
● Draw all Feynman diagrams for L (the propagators come from L

0
, the vertexes from L

1
).

● Perform the divergence subtraction, it should be equivalent to the introduction of counterterms:
L

bare
=L+L

ct
.

The bare Lagrangian must be reducible to the same form by the change of variables ψ→aψ, A→bA 
(may be with different m

bare
≠m, e

bare
≠e, ξ

bare
≠ξ that can be infinite).

● The physical parameters m
phys

 and e
phys

 can be extracted from the renormalized Feynman amplitudes 
(using the on-shell conditions).

● It must be m
phys

=m (otherwise the perturbation theory crashes down).

● It is possible that e
phys

≠e, but both parameters are finite.

● The Feynman amplitudes have a physical meaning only with the external line renormalization.
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● lepton self-energy
ω=1
the counterterms are proportional to

● photon self-energy
ω=2
                                 are OK.
            is not good, but the subtraction at zero momenta cancels 
this term (only after summation over Feynman diagrams)

● vertex-like
ω=0
the counterterms like 

● photon-photon scattering
ω=0
It gives AAAA-like bad counterterms, but they are cancelled if we 
subtract at zero momenta (only after summation over Feynman 
diagrams)

Renormalization of quantum electrodynamics:
counterterms
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Full photon propagator:
    

      D
μν

(p)=

Full electron propagator:
    

          S(p)=

● The mass m should be physical: S(p) has a pole at p2=m2. 
A linear condition: r(m2)+s(m2)m=0.

● The external line renormalization constants are extracted from the full propagators:

Linear conditions:
   (Z

3
)-1-1=iΠ’(0),        (Z

2
)-1-1=-i[s(m2)+2mr’(m2)+2m2s’(m2)].

Z
2
, Z

3
 relate to the LSZ conditions. They DO NOT describe the change of variables for reduction of the Lagrangian 

with counterterms to the counterterm-free form!
● The physical electric charge is extracted from the vertex-like diagrams:

   e
phys

=iZ
2
(Z

3
)1/2[a(m2)+b(m2)m+c(m2)m2].

Renormalization of quantum electrodynamics:
the on-shell conditions

Amputated vertex and self-energies:

For convenience:
   (Z

1
)-1=i[a(m2)+b(m2)m+c(m2)m2]/e.

The Ward identity:
   Z

1
=Z

2 
(if the subtraction procedure preserves the Ward identity).

Thus, e
phys

= e(Z
3
)1/2    (NOT e

bare
!!!)

Each amputated Feynman amplitude with >=3 
external lines is multiplied by
    (Z

2
)a/2(Z

3
)b/2,

where a, b are the numbers of external fermion, 
photon lines.
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Zimmermann’s forest formula that removes all UV divergences:

A forest is a set of subdiagrams of a diagram, each of them are non-intersecting or nested.
F is the set of all forests of  UV-divergent 1-particle irreducible subdiagrams of the diagram.

Usually, M
G
 extracts the Taylor expansion at zero momenta up to the degree ω(G). However, one can 

modify the definition in order to perform the on-shell renormalization in-place:
● For photon self-energy and photon-photon scattering subgraphs M

G
 remains the same. It gives Z

3
=1.

● For fermion self-energy subgraphs:
First 2 terms extract the overall UV divergence. The remaining term does not have it.
This subtraction guarantees the mass condition and simultaneously Z

2
=1.

● For vertex-like diagrams:                                                                               It gives Z
1
=1.

The a(m2)-term extracts the UV divergence, the remaining ones do not have an overall UV divergence.

Renormalization of quantum electrodynamics:
the in-place on-shell renormalization making Z=1

Amputated vertex and self-energies:

The linear on-shell conditions:
       r(m2)+s(m2)m=0,
       (Z

1
)-1=i[a(m2)+b(m2)m+c(m2)m2]/e,   (Z

2
)-1-1=-i[s(m2)+2mr’(m2)+2m2s’(m2)],     (Z

3
)-1-1=iΠ’(0),

       e
phys

 = (Z
1
)-1Z

2
(Z

3
)1/2e   
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● For photon self-energy and photon-photon scattering 
subgraphs M

G
 extracts the Taylor expansion at zero 

momenta up to the degree ω(G).
● For fermion self-energy subgraphs:

● For vertex-like subgraphs:

Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Amputated vertex and self-energies:

F is the set of all forests of 1-particle 
irreducible UV-divergent subgraphs.

But wait...
Yes, the definition of M

G
 is based on the on-shell conditions. 

But what about the forest formula itself? 
What about this combinatorics of non-overlapping subdiagrams? 
What has this to do with physics?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

F is the set of all forests of 1-particle 
irreducible UV-divergent subgraphs.

What do we need?
● Equivalence to the introduction of counterterms.

We have already proved this statement:
if we draw a Feynman diagram with counterterm vertexes, each 
of the vertexes can be expanded to a part of the forest (a fat 
circle on a picture). After summation over all possible 
expansions we obtain the coefficient C

1
C

2
...C

k
, where C

j
 

corresponds to the counterterm vertex j and depends only on the 
type of this vertex (it does not depend on the Feynman diagram 
and on the place of the vertex in this diagram).
Since we consider only 1-particle irreducible subdiagrams, the 
“countertermness’’ is valid for amputated diagrams.

● The physical conditions are satisfied.
Suppose we have a vertex-like or a self-energy diagram G, for 
which the linear condition is formulated.
Since G does not overlap with another subdiagrams, the 
multiplier (1-M

G
) is factorized.

Forests are natural!
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Yes, the forest formula with on-shell renormalization operators leads to the physical renormalization.

But why so complicated?
Is there a simpler solution for the in-place renormalization?

F is the set of all forests of 1-particle 
irreducible UV-divergent subgraphs.
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?

UV divergences cancellation?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The linear conditions are satisfied.
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The linear conditions are satisfied.

Equivalence to the introduction of counterterms?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

Possible simpler solution № 1:

    just take (1-M
G
), where G is the Feynman diagram

What is wrong?

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The linear conditions are satisfied.

Equivalence to the introduction of counterterms?

FAIL,
because the counterterm vertex can be at any place in the diagram based on Feynman rules with 
counterterms.
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Equivalence to the introduction of counterterms?

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

No problem. The internal-external part factorization idea works. Nested diagrams 
are not obligatory for this.

Equivalence to the introduction of counterterms?

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The internal-external part factorization idea works. Nested diagrams 
are not obligatory for this.

Equivalence to the introduction of counterterms?

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?



 

[87] Sergey Volkov   sergey.volkov@partner.kit.edu 

Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The internal-external part factorization idea works. Nested diagrams 
are not obligatory for this.

Equivalence to the introduction of counterterms?

FAIL,
because (1-M

G
), where G is the whole diagram, is not factorized.

F is the set of all sets of non-
intersecting 1-particle irreducible UV-
divergent subgraphs.

Nested subdiagrams are forbidden!

Possible simpler solution № 2:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?



 

[91] Sergey Volkov   sergey.volkov@partner.kit.edu 

Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?



 

[92] Sergey Volkov   sergey.volkov@partner.kit.edu 

Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The linear conditions are satisfied, because (1-M
G
) is factorized.

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The linear conditions are satisfied, because (1-M
G
) is factorized.

Equivalence to the introduction of counterterms?

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

UV divergences cancellation?

Does not work, but we don’t care about this (we are interested only in physics).
Suppose we have an ideal regularization for working with infinities.

Physical conditions?

No problem. The linear conditions are satisfied, because (1-M
G
) is factorized.

Equivalence to the introduction of counterterms?

FAIL,
an expansion of several counterterm vertexes should be possible.

F is the set of all sets of nested 1-particle 
irreducible UV-divergent subgraphs.

Not intersecting subdiagrams are forbidden!

Possible simpler solution № 3:

What is wrong?
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Renormalization of quantum electrodynamics:
the in-place renormalization forest formula and physics

-M

-M -M

-M

-M -M

-M-M

-M

-M -M

-M

-M

-M

-M

-M -M

-M

-M

-M

-M

…….

physical
conditions

physical
conditions

physical
conditions

equivalence
to an

introduction
of counterterms

physical
conditions

equivalence
to an

introduction
of counterterms

Forests are inevitable!
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Renormalization of quantum electrodynamics:
a numerical example of the in-place renormalization

№ Value

1 0.77747802

2 -0.46764544

3 0.564021-(1/2)log(λ2/m2)

4 -0.089978+(1/2)log(λ2/m2)

5 0.0156874

Σ -0.328478966

The coefficient before (α/π)2 in the electron anomalous 
magnetic moment.

[A. Petermann, Helv. Phys. Acta 30, 407 (1957)]

λ is the photon mass.
Unfortunately, some of the contributions are IR 
divergent.

It is interesting that both IR divergences come from 
counterterms!

IR divergences is the reason why the in-place 
subtraction is rarely used in calculations.

However, modified subtractions procedures that cover 
also IR divergences (in partial cases) are useful for high-
order calculations:
  

[M. J. Levine, J. Wright, Phys. Rev. D 8, 3171 (1973)]
[R. Carroll, Y.-P. Yao, Phys. Lett. 48B, 125 (1974)]
[P. Cvitanović, T. Kinoshita, Phys. Rev. D 10, 3991 (1974)]
[T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Nucl. Phys. B 
796, 184 (2008)]
[S. Volkov, Phys. Rev. D 100, 096004 (2019)]
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Renormalization of quantum electrodynamics:
a note about an interchange between L0 and L1

The Lagrangian: L=L
0
+L

1

    
L

0
 is the free part (the propagators come from it).

  L
1
 is the interaction part (the vertices come from it).

The renormalization by the forest formula is equivalent to the adding counterterms to L
1
.

Moving quadratic terms between L
0
 and L

1
 changes nothing:

    a geometric progression sum of the chains with the corresponding vertices in L
1 
equals

       the propagator with this term in L
0
.

However, there are two possible unpleasant situations:
● The new vertex can fall into an external line.

This geometric progression idea does not work for external 
lines.
Solution: only two types of Feynman diagrams have a physical 
meaning:
1) amputated (in this case, a vertex can’t be on an external line);
2) surrounded by propagators (in this case, the external lines are 
incident to the vertexes that do not follow the Feynman rules for 
the ordinary vertices and therefore an insertion is impossible).

● The new vertex can become the only vertex in a diagram.
Solution: amputated Feynman diagrams with ≤2 external lines 
do not have a physical meaning as describing physical 
processes. They have a meaning only as a part of the full 
propagator.

not amputated Feynman diagram
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Renormalization of quantum electrodynamics:
different ways of the in-place renormalization

A minimalistic approach:
to subtract only the fermion mass and the quadratic part of the photon self-energy

Amputated vertex and self-energies:

No other subtractions!
● UV divergences are removed by the external line renormalization: Z

1
 and Z

2
 are UV-divergent (and, 

strictly speaking, also IR-divergent).

● The charge renormalization is easy: Z
1
=Z

2
, Z

3
=1, e

phys
=e.

● A regularization for working with infinities is required.
● No nonphysical subtractions.
● No overlaps.
● Very convenient for studying properties (like the gauge invariance at the level of Feynman diagrams).
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Renormalization of quantum electrodynamics:
different ways of the in-place renormalization

An intermediate approach:
simpler formulas for the vertex and fermion self-energy subtractions

Amputated vertex and self-energies:

The subtractions are the same as in the Z=1 approach, but

● All UV divergences are removed in each individual Feynman diagram, as well as in the Z=1 approach.

● Z
1
=Z

2
≠1, an external line renormalization is required (in contrast to the Z=1 approach).

● No IR divergences in the counterterms (in contrast to the Z=1 approach).

● However, Z
1
 and Z

2
 are IR divergent.

● The charge renormalization is easy: Z
1
=Z

2
, Z

3
=1, e

phys
=e (as well as in the other approaches).

See an example of the application of a similar method:
    [S.Volkov, arXiv:2308.11560 (2023)]
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals

- approaches to the regularization of Minkowsky-space 
propagators
- the Schwinger parameters
- the formulation of the BPHZ theorem
- issues and difficulties related to Schwinger-parametric 
integrals
- power counting theorems

● The proof of the BPHZ theorem
● Conclusions
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The approaches:
● An additional Euclidean-based term in the denominator.

For example, with an additional regulator ε
mink

:

Or Zimmermann’s simultaneous approach:

The Lorentz-covariance after taking ε
mink

→0 (or ε→0) is not obvious.
W. Zimmermann proved that the forest formula applied directly in momentum space leads to finite 
integrals and gives a Lorentz-covariant distribution as ε→0:
    [W. Zimmermann, Commun. Math. Phys. 15, 208 (1969)]

● The Schwinger parameters:
First integrate over loop momenta with a fixed α (analytically, ignoring the non-existence).
The subtraction applied directly in the Schwinger-parametric integrals leads to finite integrals:
    [N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 (1957)]
    [K. Hepp, Commun. Math. Phys. 2, 301 (1966)]

Formulations in terms of finite integrals:
regularization of Minkowsky-space propagators

Integrals with Minkowsky-space propagators

where P(q) is a polynomial, do not exist. The divergence subtractions do not help. 
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Suppose we have a loop integral

p
1
,…,p

r
 are the external momenta.

k
1
,…,k

L
 are the loop momenta.

P(k,p) is polynomial of k and p.
Q

j
(k,p,ε

IR
,ε

Mink
)=s

j
(k,p)+iε

Mink
r

j
(k,p)+iε

IR
 , 

where s
j
 are Lorentz-covariant real-valued quadratic functions (not obligatory homogeneous), r

j
 are 

quadratic functions, r
j
(k,p)>0, r

j
(k,p)→+∞ as k→∞.

The integral in I and the limit do not exist, but we can redefine it by

This integral exists for any α>0 (because r
j
(k,p)→+∞ make a multiplier tending to 0 at infinity; it 

suppresses all other multipliers). 
F(p

1
,…,p

r
,α

1
,…,α

M
,ε

IR
) exists and saves the Lorentz-invariance (it can be proved using analytical formulas).

α
1
,…,α

M 
are called the Schwinger parameters.

This swap of the limit and integration and the integration order is incorrect, but we use it as a definition!
I(p

1
,…,p

r
,ε

IR
) exists for ε

IR
>0 provided that we don’t have UV divergences. 

Formulations in terms of finite integrals:
the Schwinger parameters
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If the Schwinger parameters α
1
,…,α

M
>0 are fixed, we can replace the usual propagators

with

After that, we apply Zimmermann’s forest formula to the diagram with these propagators and obtain

It is correctly defined, because all the needed integrals exist.
Put

Theorem. I
Sub

(p
1
,…,p

r
,ε

IR
) exists.  We prove this later.

Formulations in terms of finite integrals:
the BPHZ theorem formulation

Suppose we have a Feynman diagram with r external, M internal lines, L independent loops.
p

1
,…,p

r
 are the external momenta.

k
1
,…,k

L
 are the loop momenta.

P(k,p) is the product of all propagator numerators and vertex polynomials.
Q

j
(k,p,ε

IR
,ε

Mink
)=q

j
(k,p)2-(m

j
)2+iε

Mink
r

j
(k,p)+iε

IR
    (a regularized propagator denominator).

q
j
 is the momentum passing the line j.

m
j
 is the particle mass of the line j.

r
j
 are quadratic functions, r

j
(k,p)>0, r

j
(k,p)→+∞ as k→∞.
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To obtain an explicit formula for

we rewrite it as

What we need is to obtain the integrals like

where A is an arbitrary matrix n×n, Re A<0; f is an n-dimensional vector. If all the matrices are real, by 
the change of variables                       we rewrite the integral as

By diagonalization and using the formula for 1-dimensional Gaussian integral:

If the matrices are complex, use the analytic continuation (both the left and right side are analytic, but 
the continuation from the real axis is unique).
Another approach to complex matrices: first diagonalize Re(A) by multiplying by Re(A)-1/2 in both sides, 
after that diagonalize Im(A) by rotations.
Note. One should be careful with the det(-A) square root sign. It is not determined by det(-A) and 
should be taken to make the function continuous. 

Formulations in terms of finite integrals:
Schwinger parameters and Gaussian integrals
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Since Q
j
(k,p,ε

IR
,ε

Mink
)=q

j
(k,p)2-(m

j
)2+iε

Mink
r

j
(k,p)+iε

IR 
, and A-1 is a polynomial on A divided by det(A), it is 

convenient to write

where U is a real polynomial; V is a real quadratic form on p and a polynomial on α; W is a polynomial 
on p and rational on α; C is a coefficient.

We have an integrand

The explicit formula 

for the integrals like this allows us to take the limit ε
Mink

→+0: the same formula remains valid for the 
limit (but some care with the sign is required). After taking the limit:
● The matrices A and f become imaginary.
● The matrix A consists of ``Minkowsky’’ 4*4 blocks; thus, the square root of det(-A) is the square of 

the reduced matrix determinant (a rational function).

Formulations in terms of finite integrals:
a general form of Schwinger-parametric integrands
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Formulations in terms of finite integrals:
singularities of Schwinger-parametric integrals

where U is a real polynomial; V is a real quadratic form on p and a polynomial on α; 
W is a polynomial on p and rational on α; C is a coefficient.

The exponential factor is bounded and fastly tends to 0 as α→+∞.
Moreover, all coefficients of U are positive (we will see this later).

Thus, singularities in the integral may occur when α→0. And it is governed by the 
rational part.
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Suppose, for simplicity, we have an integral

where F is a rational function with positive coefficients, Λ serves as an IR cut-off.

How to determine if it is convergent? 

One approach: 
take all possible nonempty sets S of indexes {1,2,…,M};
for each S put α

j
=t→0 for j in S, a

j
>0 are fixed for j outside S;

if F(t)=Ω(t-|S|), then the integral is divergent.

Yes, it recognizes divergences, but...

Formulations in terms of finite integrals:
discovering singularities of rational integrals
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Suppose, for simplicity, we have an integral

where F is a rational function with positive coefficients, Λ serves as an IR cut-off.

How to determine if it is convergent? 

One approach: 
take all possible nonempty sets S of indexes {1,2,…,M};
for each S put α

j
=t→0 for j in S, a

j
>0 are fixed for j outside S;

if F(t)=Ω(t-|S|), then the integral is divergent.

Yes, it recognizes divergences, but...

Formulations in terms of finite integrals:
discovering singularities of rational integrals

It is not enough!
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Suppose, for simplicity, we have an integral

where F is a rational function with positive coefficients, Λ serves as an IR cut-off.

How to determine if it is convergent? 

One approach: 
take all possible nonempty sets S of indexes {1,2,…,M};
for each S put α

j
=t→0 for j in S, a

j
>0 are fixed for j outside S;

if F(t)=Ω(t-|S|), then the integral is divergent.

Yes, it recognizes divergences, but...

Formulations in terms of finite integrals:
discovering singularities of rational integrals

It is not enough!

An example:    F(x,y) = x/(x4+y2).
x→0, F≈x (no divergence).    y→0, F≈1 (no divergence).     t=x=y→0, F≈t-1 (no divergence).
But it is divergent!
In the area x2<y<2x2 it behaves like 1/x3.
Thus, the whole integral in this area behaves like ∫x-1dx.

One must be careful even in the simplest cases!
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To handle difficulties with a divergence recognition in rational integrals, 
power counting theorems were developed:
● Weinberg’s theorem

   [S. Weinberg, Physical Review 118, N 3, 838-849 (1960)]

Applicable for Feynman integrals in Euclidean momentum space.
● Zimmermann’s theorem

   [W. Zimmermann, Commun. Math. Phys. 11, 1-8 (1968)]

A modification of Weinberg’s theorem working in Minkowsky space with 
Zimmermann’s regularization.

● Speer’s lemma, its consequences and generalizations
   [E. Speer, Journal of Mathematical Physics 9, N 9, 1404-1410 (1968)]

where α
1
≤α

2
≤...≤α

M
 are the Schwinger parameters; the ultraviolet divergence index 

ω(S) is defined on sets of lines, including not connected; P is a polynomial.
It guarantees that the Schwinger-parametric integral is convergent, if there are no UV-
divergent subdiagrams.
The asymptotic behavior of the constituting terms can also be obtained exactly (it was 
used earlier as a basis for the dimensional and other regularizations).

Formulations in terms of finite integrals:
power counting theorems

the most useful
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem
● Conclusions
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Introduce the Schwinger parameters α
1
,…,α

M
 . If the values α>0 are fixed, use the propagator

for the line l. 

If ε
IR

>0, ε
Mink

>0 are also fixed, all the integrals are well-defined. Apply the forest formula, obtain

Take the limit

We can use explicit analytical formulas. However, when we apply the forest formula, we have to work 
with diagrams containing special polynomial vertices (that correspond to the Taylor expansion terms).

After that, the integral
exists.

Suppose we have a Feynman diagram with r external, M internal lines, L independent loops.
p

1
,…,p

r
 are the external momenta.

k
1
,…,k

L
 are the loop momenta.

P
l
(k,p) is the propagator numerator (a polynomial).

Q
j
(k,p,ε

IR
,ε

Mink
)=q

j
(k,p)2-(m

j
)2+iε

Mink
r

j
(k,p)+iε

IR
    (a regularized propagator denominator).

q
j
 is the momentum passing the line j.

m
j
 is the particle mass of the line j.

r
j
 are quadratic functions, r

j
(k,p)>0, r

j
(k,p)→+∞ as k→∞.

The proof of the BPHZ theorem:
remember the formulation
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Suppose that we use monomials instead of polynomials.
Each line monomial P

l
 has a form                                     where q is the line momentum. Each 

vertex monomial P
v
 is the product of monomials like this for the incident to v lines.

The forest formula is linear; thus, more complicated constructions can be obtained as linear 
combinations.

The monomials can have degrees smaller that of the original polynomials, but we always use 
the ultraviolet degrees of divergence ω(G) calculated for the original ones.

The proof of the BPHZ theorem:
remember the formulation

More precisely,…

Earlier we assumed that each vertex v had its polynomial P
v
, as well as each line l has its 

polynomial P
l 
.

It also implies tensors, matrices and other algebraic objects in a diagram.
It is not convenient for the analysis...
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The proof of the BPHZ theorem:
the ideas

● Use explicit combinatorial formulas for the construction blocks of the 
Schwinger-parametric integrals.
    Symanzik polynomials and so on.
    Independent on the loop basis.
    This makes the power counting possible…

● Split the Schwinger-parametric space into areas with asymptotically 
different behavior of the functions: Hepp sectors and “Hanoi towers”.

● Reduce the forest formula to the form with sets of lines.
   because the “Hanoi towers’’ technique works with sets of lines…

● Factorize the forest formula in each Hepp’s sector differently, split it into 
parts.
   It eliminates the problem with overlapping divergences…
    The combinatorial ideas are easy to check, but hard to invent...

● Replace the remaining subtractions with differentiations.

● Count the powers and estimate the integrand absolute value.



 

[115] Sergey Volkov   sergey.volkov@partner.kit.edu 

Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem

- the formulation, ideas
- Schwinger-parametric integrals, combinatorial formulas
- power counting, Hepp sectors, ''Hanoi'' towers
- reduction to the forest formula with sets of lines
- elimination of overlaps
- the case when all the subtractions fit

● Conclusions
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k
1
,…,k

L
 are the loop momenta

p
1
,…,p

r
 are the external momenta

q
j
(p,k) is the momentum passing through the line j

Q
j
(k,p,ε

IR
,ε

Mink
)=q

j
(k,p)2-(m

j
)2+iε

Mink
r

j
(k,p)+iε

IR
    (a regularized propagator denominator)

P
j
 is the monomial corresponding to the propagator numerator (and parts of the vertex monomials)

We will use a more convenient formula with ξ:

It equals

Here A is independent on ξ; f and g depend on ξ linearly.

Thus, we have a quadratic function on ξ in the exponent.

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas
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Multiple differentiation of the exponent of the quadratic function

where Λ, β, γ are a symmetric matrix, a vector and a number; the summation goes over all sets of non-
intersecting pairs in {1,2,…,n} (including the empty one).
  

Example:

  

Application to the Schwinger-parametric expressions.
  

i
1
,…,i

n
 correspond to the propagator numerator multipliers or vertex monomial multipliers.

In one term, some of the multipliers are paired; the remaining ones are unpaired.
Each pair increases the degree of divergence.

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

ω=1, but we have only a logarithmic UV divergence,
because there is only one numerator multiplier, no possibility to make a pair
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Thus, we have an integral

We can perform the multiple differentiation with respect to ξ, but we need exact formulas for A, f, g.

They are:

where p=[p
1
,…,p

r
]T; 

S
Loop

 is a loop basis (a matrix of 0,1,-1, one column is one independent loop); 
S

Flow
 is a flow basis (a number matrix; S

Flow
p = the vector of the line momenta that corresponds to k=0 

and the external momenta p). 

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas
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We should combine the formulas

to obtain U(α), W(p,α), V(p,α).

We arrive at

W(p,α) is obtained as a sum (with coefficients) over all sets of nonintersecting pairs of the numerator 
and vertex multipliers. The multiplier corresponds to (l,μ), where l is a line number, μ is a coordinate 
index. The pair [(l,μ),(j,ν)] gives (B

lj
g

μν
)/U(α), the unpaired multiplier (l,μ) gives ((Y

l
)

μ
)/U(α), where 

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas
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U, V, B, Y are polynomials in α, p. There exist basis-independent combinatorial 
formulas for them that allow us to easily analyze properties and to count the powers.
   

Ideas of obtaining these formulas:
● An independence on the loop basis.
● Two formulas from linear algebra:

● Graph connectivity and linear independence.
● An accurate consideration of the graph flows.

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas
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The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

Proof. 

Construct the sequence of 1-trees R
0
,…,R

n 
, where R

0
=R, R

n
=R’, each tree is obtained from the previous 

one by adding one line and removing one. 
It is always possible: add a line that is in R’, but not in the current 1-tree, and remove one on the emerged 
loop that is not in R’ ; repeat the operation until it equals R’. 

Let S
j
 be the loop basis that corresponds to R

j 
. By [S

j
]

l
 we denote the basis element (column) that 

corresponds to the line l (that is not in R
j
).

Suppose R
j+1

 is obtained from R
j
 by adding b and removing a.

   [S
j+1

]
l
 = ±[S

j
]

l
 , if R

j
 has a path that connects the ends of l and not contains a.

   [S
j+1

]
l
 = ±[S

j
]

l
±[S

j
]

b
, if l≠a, and the path in R

j 
, that connects the ends of l, contains a (we go around).

   [S
j+1

]
a
 = ±[S

j
]

b.

The corresponding matrix is triangle with 0, 1, -1 elements. Therefore det=±1.

Loop basis independence:

if the bases S
Loop

 and S’
Loop

 are constructed from the 1-trees (spanning 
trees) R and R’, then there exists a matrix Q such that S’

Loop
=S

Loop
Q,   

det Q=±1.
(note: the basis elements are the columns) An 1-tree (bold lines) and a corresponding 

loop basis (coloured);
Each loop is one line outside the tree and 
the path in the tree connecting its ends.
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It equals

Let us take one term. There are two cases:

1. The remaining M-L lines (that are not in i
1
,…,i

L
) form an 1-tree (spanning 

tree) R.
Take a basis S’

Loop
 based on R. Due to the basis independence, we have

(since S’
Loop

 is diagonal with ±1 elements on the lines i
1
,….,i

L
).

2. The remaining M-L lines do not connect all vertices.
In this case, {i

1
,…,i

L
} contains a cut that separates the vertices into 2 parts.

The linear combination of                            that corresponds to this cut 
(directed from one part to another) gives 0 (because each loop passes the 
cut in one direction the same number of times than in the opposite 
direction). Thus,                                         .

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

The first Symanzik polynomial:
                 the term signs are constant!

If the remaining M-L lines (red) 
do not span all vertices, the set 
i
1
,…,i

L
 (black bold) has a cut 

that separates into 2 parts
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The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

The first Symanzik polynomial: an example

The 1-trees:
   {3,1,4}, {3,1,5}, {3,2,4}, {3,2,5},
   {1,4,5}, {4,5,2}, {5,2,1}, {2,1,4}
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The formula is:

where (B
R
)

ab
=1, if a and b go in the same direction in the loop of R; -1 if in the opposite direction, 0 in 

the other cases. A tree with cycle is a set that is obtained from an 1-tree by adding a line.

The idea of the proof is the same as for U(α), but with cofactor matrices:

where S
Loop

=[s
1
,…,s

M
]T; for each term we have two cases:

● The remaining lines form a tree with cycle R. Since CT(QTAQ)=(Q-1CT(A)Q)(det Q)2, each term does 
not depend on the loop basis. Take the basis based on a tree that is obtained from R by removing one 
line. The argument of CT becomes diagonal with one zero, everything becomes simple; thus, CT is a 
matrix with only one nonzero element.

● The remaining lines do not connect all vertices. Then we have a cut, and the term is zero (the rank of 
the CT argument ≤L-2).

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas
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The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

The B(α) matrix: an example

where (B
R
)

ab
=1, if a and b go in the same direction in the 

loop of R; -1 if in the opposite direction, 0 in the other 
cases. A tree with cycle is a set that is obtained from an 1-
tree by adding a line.

The trees with cycle are:
  {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}
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If i≠j, 

where Flow
R,i

[a→b] means the flow through i in R that comes 
from a and goes to b with the intensity 1.

For i=j it works a little bit differently, but it is compensated by 
the U(α) term:

An accurate analysis of the flow incomes and outcomes leads to

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

If a tree with cycle has i and j on a loop, 
then in the tree obtained by removing j, the 
flow going from the end of j to its begin 
passes through i.
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The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

The Y(p,α) vector: an example

The 1-trees:
   {3,1,4}, {3,1,5}, {3,2,4}, {3,2,5},
   {1,4,5}, {4,5,2}, {5,2,1}, {2,1,4}
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We have

where Cut[R] is a vector of the cut that correponds to the 
connectivity components of R (oriented in the same way 
as in the calculation of the flow).
A 2-tree is an acyclic subgraph that connects the whole 
set of vertexes into 2 components.

Calculating                           accurately, we arrive at

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

A 1-tree (bold lines) without a line (blue 
bold) is a 2-tree (black bold). All possible 
ways to insert a line back (blue) form a cut.

It is called the second Symanzik polynomial
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The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

The second Symanzik polynomial V(p,α): an example

The 2-trees are:
    {2,5}                          (the cut flow = q),
    {1,2}, {1,3}, {2,3}    (the cut flow = k),
    {1,4}                          (the cut flow = p+q+k),
    {3,4}, {3,5}, {4,5}    (the cut flow = p),
    {2,4}                          (the cut flow = k+q),
    {1,5}                          (the cut flow = p+q).
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Combinatorial formulas: a summary

W(p,α) is obtained as a sum (with coefficients) over all sets of nonintersecting pairs of the 
numerator or vertex multipliers. The multiplier corresponds to (l,μ), where l is a line number, 
μ is a coordinate index. The pair [(l,μ),(j,ν)] gives (B

lj
g

μν
)/U(α), the unpaired multiplier (l,μ) 

gives ((Y
l
)

μ
)/U(α).

where (B
R
)

ab
=1, if a and b go in the same direction in the loop of R; -1 if in the opposite 

direction, 0 in the other cases.

The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

    (the first Symanzik polynomial)

(the second Symanzik polynomial)
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The proof of the BPHZ theorem:
schwinger-parametric integrals, combinatorial formulas

Combinatorial formulas: the literature

[V. A. Smirnov, Renormalization and Asymptotic Expansions, PPH’14, Progress in Mathematical 
Physics, Birkhäuser, 2000]

[O. I. Zavyalov, Renormalized Quantum Field Theory, Mathematics and Its Applications. Soviet Series, 
vol. 21, Kluwer, Dordrecht, Netherlands, 1990, 524 pp.]

[P. Cvitanovic, T. Kinoshita, Feynman-Dyson rules in parametric space, Phys. Rev. D 10 (1974) 3978]

There is also an electric circuit analogy:
   Y

j
(p,α)/U(α) = the current passing through j in the circuit with the element resistances α and the 

external currents p;
   V(p,α)/U(α) = the dissipated power of this circuit.

[J. D. Bjorken, S. D. Drell, Relativistic Quantum Fields, McGraw-Hill College, New York, 1965, 
Chapter 18 “Dispersion Relations”, Section 18.4 “Generalization to Arbitrary Graphs and the Electrical 
Circuit Analogy”]

Applications of the electric circuit analogy exist:
    [S. Volkov, J. Exp. Theor. Phys. 122 (6) (2016) 1008–1031]
    [S. Volkov, Nuclear Physics B 961, 115232 (2020)]
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem

- the formulation, ideas
- Schwinger-parametric integrals, combinatorial formulas
- power counting, Hepp sectors, ''Hanoi'' towers
- reduction to the forest formula with sets of lines
- elimination of overlaps
- the case when all the subtractions fit

● Conclusions
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The proof of the BPHZ theorem:
power counting, Hepp sectors, ``Hanoi towers’’

Definitions.

A Hepp sector is an order in the Schwinger parameters. 
There are M! Hepp sectors (the number of all permutations of M elements).
If we work inside one Hepp sector, we suppose for convenience α

1
≤α

2
≤...≤α

M
 .

It is convenient for the power counting to consider one Hepp’s 
sector as “Hanoi towers’’.

Each initial segment of lines {1,2,…,j} (1≤j≤M) gives “tower’’ 
disks of thickness α

j
/α

j+1
 (or α

M
 for j=M).

A disk is an 1-particle irreducible component (as a nonempty set 
of lines) of the initial segment (or a bridge). 

More precisely, two lines a,b of {1,2,…,j} are called equivalent, 
if a=b or there is a cycle in {1,2,…,j} passing through a and b 
and not passing lines twice; A disk is a class of equivalence.

There may be several disks with the same sets of lines (they 
correspond to different segments). 

By h(D) we denote the thickness of the disk D.
h(D) = α

j
/α

j+1 
≤ 1. The thicknesses are multiplied! a disk
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The proof of the BPHZ theorem:
disks as classes of equivalence

We suppose α
1
≤α

2
≤...≤α

M

The lines a,b of {1,2,…,j} are called equivalent, if a=b or there is a cycle in {1,2,…,j} passing through a 
and b and not passing lines twice; A disk is a class of equivalence.

The defined relation x~y is really an equivalence relation, because it is transitive: if x~y and y~z, then 
x~z.

Proof of the transitivity. Take a cycle c
1
 that passes through x and y. If 

z is not on this cycle, take a cycle c
2
 that passes y and z. Take the part 

of c
2
 from v to w, where v and w are the closest (to z) intersections with 

c
1
. Continue this path with the part of c

1
 from w to v that contains x.

An example of
equivalence
classes:

The orange set is one class, although for the 
left and right lines only a self-intersecting 
cycle exists. 

Properties of disks.
1. If a disk D is not 1-particle irreducible, then D is one line with different ends.
2. If the disks D

1
 and D

2
 intersect, then one of them is contained in the other one.

    The idea of the proof: consider the largest initial segment and its classes of equivalence.
3. If the 1-particle irreducible disks D

1
 and D

2
 have a common vertex, then one of them contains the 

other one.
    The idea of the proof: consider the largest initial segment and cycles passing the common vertex.
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The proof of the BPHZ theorem:
power counting, Hepp sectors, ``Hanoi towers’’

“Hanoi towers’’ and disks: an example
   

We suppose α
1
≤α

2
≤...≤α

8
 .

Initial segment:{1,2,3,4,5,6,7,8}
Disks:
  {1,2,3,4,5,6,7,8}
Thickness: h=α

8

Initial segment:{1,2,3,4,5,6,7}
Disks:
  {1,3,4}, {6}, {2,5,7}
Thickness: h=α

7
 / α

8

Initial segment:{1,2,3,4,5,6}
Disks:
  {1,3,4}, {6}, {5}, {2}
Thickness: h=α

6
 / α

7

Initial segment:{1,2,3,4,5}
Disks:
  {1,3,4}, {5}, {2}
Thickness: h=α

5
 / α

6 

Initial segment:{1,2,3,4}
Disks:
  {1,3,4}, {2}
Thickness: h=α

4
 / α

5  

Initial segment:{1,2,3}
Disks:
  {1}, {3}, {2}
Thickness: h=α

3
 / α

4  

Initial segment:{1,2}
Disks:
  {1}, {2}
Thickness: h=α

2
 / α

3  

Initial segment:{1}
Disks:
  {1}
Thickness: h=α

1
 / α

2  
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If T is a 1-tree, s is a set of diagram lines, put

We call it the defect of the 1-tree T in s.
If s is connected, 

The main statement needed for the power counting.
if D

1
,…,D

n
 are all disks of the Hepp sector, there exists a 1-tree T such that

   

Proof. Let us describe the algorithm of constructing T line by line. Start from the empty set.
Take firsts all disks of the initial segment {1}, then of {1,2} and so on.
For each disk D extend T to a spanning tree inside D.
Cycles do not emerge, because there is no cycle inside one initial segment {1,…,j} passing 
several disks of this segment.

The proof of the BPHZ theorem:
power counting, Hepp sectors, ``Hanoi towers’’

Basics of power counting
is in the denominator! One must be accurate!
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The proof of the BPHZ theorem:
power counting, Hepp sectors, ``Hanoi towers’’

The optimal tree for all disks simultaneously: an example
  

We suppose α
1
≤α

2
≤...≤α

8
 .

Initial segment:{1,2,3,4,5,6,7,8}
Disks: {1,2,3,4,5,6,7,8}
Tree (state): {1,2,3,5,6}

Initial segment:{1,2,3,4,5,6,7}
Disks: {1,3,4}, {6}, {2,5,7}
Tree (state): {1,2,3,5,6}

Initial segment:{1,2,3,4,5,6}
Disks: {1,3,4}, {6}, {5}, {2}
Tree (state): {1,2,3,5,6}

Initial segment:{1,2,3,4,5}
Disks: {1,3,4}, {5}, {2}
Tree (state): {1,2,3,5}

Initial segment:{1,2,3,4}
Disks: {1,3,4}, {2}
Tree (state): {1,2,3}

Initial segment:{1,2,3}
Disks: {1}, {3}, {2}
Tree (state): {1,2,3}

Initial segment:{1,2}
Disks: {1}, {2}
Tree (state): {1,2}

Initial segment:{1}
Disks: {1}
Tree (state): {1}

We arrive at
T = {1,2,3,5,6}
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W(p,α) is obtained as a sum (with coefficients) over all sets of nonintersecting pairs of the 
numerator and vertex multipliers. Each multiplier corresponds to a line. The pair of lines (l,j) 
gives B

lj
(α)/U(α), the unpaired line l gives Y

l
(α)/U(α).

  

Since a zero-defect 1-tree for all disks exists, we have for max(α
1
,…,α

M
)≤1

Also,

where B
R
 is a {0,1,-1}-matrix, I is an indicator (=1 if the statement is true, 0 otherwise).

Since
  

where P
v[in D]

 means the part of P
v
 corresponding to the lines inside D. we arrive at

where C is a polynomial (Σ
j
α

j
 is needed if max(α)>1).

The proof of the BPHZ theorem:
power counting, Hepp sectors, ``Hanoi towers’’

Power counting in Schwinger parametric space
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem

- the formulation, ideas
- Schwinger-parametric integrals, combinatorial formulas
- power counting, Hepp sectors, ''Hanoi'' towers
- reduction to the forest formula with sets of lines
- elimination of overlaps
- the case when all the subtractions fit

● Conclusions
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The forest formula we deal with works with subdiagrams as sets of vertexes.
Since a disk is a set of lines, it is convenient to have a forest formula working with sets of 
lines as subdiagrams.

Usually we define

using the forest formula 

applied to the diagram with Schwinger-like exponential regularized propagators; here F is the 
set of all forests of  UV-divergent 1-particle irreducible subdiagrams of the diagram; a 
subdiagram includes all lines connecting its vertices (having both ends in its sets of vertices).
After that we take the limit

and calculate the integral

The proof of the BPHZ theorem:
a forest formula with sets of lines

A necessity to work with arbitrary sets of lines as subdiagrams
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The proof of the BPHZ theorem:
a forest formula with sets of lines

A definition of the forest formula working with sets of lines

We say that the sets of lines s
1
 and s

2
 are nested, if

We say that the sets of lines s
1
 and s

2 
are independent, if 

Yes, the nestedness is defined with sets of lines, but the independence with sets of vertices!

The sets of lines s
1
 and s

2 
are said to overlap, if they are not nested and not independent.

A forest of sets of lines is a set of sets of lines, each of them do not overlap.

By F
lines

 we denote the set of all forests of UV-divergent 1-particle irreducible sets of the 
diagram lines;
the UV degree of divergence is defined in the same way as for usual subdiagrams.

The formula is almost the same:
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The proof of the BPHZ theorem:
a forest formula with sets of lines

A note about applying subtractions based on sets of lines

A misunderstanding is possible about how to apply the Taylor expansion projectors M to 
arbitrary 1-particle irreducible sets of lines…

It is demonstrated by this example:

The operator M is applied to the blue bold set of lines s.
The red lines are external lines relative to s.
The cross in a circle is a special vertex expressing to the corresponding Taylor expansion monomial.
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Before applying                 the corresponding diagram looks like in the 
picture to the left. The special vertex is a monomial of degree ≤ω(s),
where                        Since                                                        we have      
                       and                 nullifies the monomial.

The forest formula with sets of lines is

A subset s of the diagram lines is said to be closed, if s contains all lines that have both ends in Vertex(s).
By F

closed
 we denote the set of all forests from F

lines
 containing only closed sets. The usual forest formula is

The proof of the BPHZ theorem:
a forest formula with sets of lines

The equivalence of the usual forest formula and the formula with sets of lines

Let {s
1
,…,s

n
} be one element of F

lines
 containing at least one not closed element. Suppose s

1
,

…,s
k
 are all maximal (with respect to inclusion) not closed elements in it.

By s
1
’ ,…, s

k
’ we denote the corresponding closed sets: Vertex(s

j
’)=Vertex(s

j
).

The corresponding forest formula element is a part of an expression, where the multiplier

is factorized. The maximality (with respect to inclusion) is needed to avoid a pathological 
situation when some set s overlaps with s

j
’ , but not with s

j
 (that destroys the factorization).

0

A pathological 
example: the blue 
bold set overlaps 
with {1,2,3,4,5}, 
but does not with 
{1,2,4,5}
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The usual forest formula gives

The forest formula with sets of lines gives:

Since all the integrals are well defined, the proved equivalence works 
for all α

1
,…,α

M
>0, ε

IR
>0, ε

Mink
>0:

Due to the explicit analytical formulas, both the limits ε
Mink

→0 exist. Therefore,

The proof of the BPHZ theorem:
a forest formula with sets of lines

The equivalence of the usual forest formula and the formula with sets of lines: 
some details
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Really, the subtractions are needed only on disks!

If all forests consist of only disks, the formula is factorized like

and everything becomes simpler (we will prove it later).

However, it is not possible to remove not needed elements for each Hepp sector 
separately.
Subtractions on not disks make serious problems!

We have a formula:

here F
lines

 is the set of all forests of UV-divergent 1-particle irreducible sets of the diagram 
lines;
a forest of sets of lines is a set of sets of lines, for each s

1
 and s

2
 of it one of the following properties is 

satisfied:

The proof of the BPHZ theorem:
the elimination of overlaps
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The proof of the BPHZ theorem:
the elimination of overlaps

A general idea of removing not-on-disk subtractions

Split the whole sum

into parts, each of them satisfies the following properties:
● Some sets s

1
,…,s

r
 present in all terms.

● The sets s
1
,…,s

r 
split the diagram into parts, and the sum can be factorized into the 

product of forest formulas in these parts.

Separations like this allow us to reduce the problem to smaller diagrams or numbers 
of terms. The separations may be different in different Hepp sectors.

However, it is very nontrivial to make it working in every case.

For example, if we just fix all not-disk subdiagrams to which M is applied, we obtain 
a factorization into smaller forest formulas, but the subtractions in the parts would 
cover not all UV divergent subdiagrams.
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Suppose the Hepp sector in the diagram is fixed: α
1
≤...≤α

M
 .

Suppose the integer numbers Δ
v
≥0 are defined for each vertex v (to allow us to do consistent 

oversubtractions: an oversubtraction at a subdiagram increases the UV degree of the larger diagrams).
We say that a set of the diagram lines s is enough divergent, if s is 1-particle irreducible and 

Let S be a set of 1-particle irreducible sets of the diagram lines satisfying the conditions:
● The closure under union with an initial segment:

If                                  l is a number, s is a maximal (with respect to inclusion) 1-particle irreducible 
subset of                                                 then                        where Λ is the set of all diagram lines. 
From this it automatically follows that all disks except Λ are in S (the case n=0).

● The closure under intersection: If                      s is a maximal (with respect to inclusion) 1-particle 
irreducible subset of                then

● The whole set Λ is not in S.

The proof of the BPHZ theorem:
the elimination of overlaps

The idea № 1: to formulate what we will prove by induction

By F
lines

[S] we denote the set of all forests of enough divergent elements of S.
Applying the forest formula based on F

lines
 and Taylor expansions up to the degree ω’(s), we obtain
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We will prove that

where P is some polynomial giving positive values and non-decreasing with respect to Σα;
            is the set of all vertices v such that for any                    satisfying                        there exist a cycle (without 
self-intersections) in             that passes v;

   

         if we take the Taylor expansion coefficients of degree d;

         

         if we subtract up to the degree ω’(G).

We will prove this by induction on |S|.
The induction base case: all the elements of S are disks (we will prove the basis later). 

The proof of the BPHZ theorem:
the elimination of overlaps

The idea № 1: to formulate what we will prove by induction
The whole set of lines Λ is not included to S.

There are two cases what we do with the whole diagram:
● Take the Taylor expansion (at zero momenta) coefficients of degree d.

In this case, we also require that each s from S does not contain the line M with the largest α. 
● Apply the usual subtraction (1-M

G
), where M

G
 is the Taylor expansion at zero momenta up to the 

degree ω’(G).
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The Hepp sector: α
1
≤α

2
≤…≤α

M
 .

1.Take the maximal line number τ contained in at least one not-a-disk element of S.

2. In each term of the forest formula

take the minimal (with respect to inclusion) not-a-disk set s that contains the line τ and the 
operator is applied to s.

The proof of the BPHZ theorem:
the elimination of overlaps

The idea № 2: a “minimax’’ separation of the forest formula

The formula is split into parts with different s.
One part corresponds to the case when the minimal element does not exist (because of the 
empty set).
We analyze all the parts separately.

If the element s is fixed, all the diagram is split into two parts: the external and internal part. 
Separate forest formulas can be written for these parts. We will prove that the whole sum with 
a fixed s is the product of the expressions for the external and internal parts.
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τ is the maximal line number contained in not-a-disk elements of S. 
   

This case corresponds to the same diagram and the same numbers Δ
v 
, but with another S’ .

   

S’ is the set of all elements of S that are disks or not containing τ.
  

   
We have to prove the following properties of S’:

● The closure under union with an initial segment: if s
1
,…,s

n
 are in S’, l is a number, 

s’ is a maximal (with respect to inclusion) 1-particle irreducible subset of s
0 
, then s’ in S’. 

    To prove this, we swap the elements and express s
0
 as the union                                where for 1≤i≤r the set u

i
 is 

the initial segment {1,2,…,l
i
}, l

i
≥τ or a disk generated by this segment containing τ; each of the sets u

r+1
,…,u

n+1
 is a 

disk not containing τ or not-a-disk contained in {1,2,…,τ-1} [we use that τ is the maximal line number contained in 
not-disks from S].
    If τ is in s’, then s’ is exactly the disk generated by {1,2,…,max(l

1
,…,l

r
)} and containing τ (because the 1-particle 

irreducible disks not containing τ do not have common vertices with this disk; the part of {1,2,…,τ-1} not contained 
in this disk is covered by another disks of {1,2,…,max(l

1
,…,l

r
)}, i.e., can’t be in the same 1PI component).

    If τ is not in s’, the set s’ is obviously in S’.

● The closure under intersection: if s
1
, s

2
 are in S’, then each maximal 1-particle irreducible subset of the intersection 

is in S’. 
    Proof.
    If s

1
 and s

2
 are disks and intersect, one of them is inside the other.

    If one of them does not contain τ, all the obtained sets don’t contain τ.

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: the case when not-a-disk elements containing τ are not used
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All elements of S’ don’t contain τ: we need this for induction.
Indeed, if             and           , then s’ is a disk generated by an initial segment {1,2,…,l}, l≥τ. 
Since                               [we use that τ is the maximal line number contained in not-disks from S]
   and s is 1PI, s is contained in one of the disks of {1,…,l}. Therefore,             .

We also have to prove the following properties of S’:
● The closure under union with an initial segment. An internal order initial segment is                             

Suppose                                                                                                  and s’ is a is a maximal 1PI set contained in s
0
 .

We have to prove that
    First we prove that s’ in S. The set                                                has maximal 1PI sets contained in it. Since s’ is 
1PI,  we have               where u is one of these sets. Thus, s’ is a maximal 1PI set contained in              From the 
closure of S under union with an initial segment it follows that               From the closure of S under intersection it 
follows that
    The case              is possible only if l≥τ. Since                          , s’=s

0
=s in this case. [the maximality of τ is used]

● The closure under intersection.
    It is obvious (because S satisfies this property).

Let us consider the internal part of the diagram relative to s.
The corresponding part of the forest formula is factorized. It corresponds to the subdiagram s. The numbers Δ

v
 are the 

same as for the original diagram. The set S’ is defined as

(we use here that s is the minimal not-a-disk element containing τ, this is true for each term).

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: the internal part relative to s
The Hepp sector: α

1
≤α

2
≤…≤α

M
 .

τ is the maximal line number contained in at least one not-a-disk element of S.
In each term, s is the minimal not-a-disk element containing τ.
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The definition of enough divergent sets for the external part with Δ’ is consistent with the one for the 
whole diagram with Δ. It is clear taking into account

where ω
ext

(u) is the UV degree of divergence of u in the external part relative to s, where s is shrunk to a 
point with a polynomial of degree d’ (cumbersome, but easy).

Let us consider the external part of the diagram relative to s.
The corresponding part of the forest formula is factorized. It corresponds to the diagram obtained from 
the whole diagram G by shrinking s to a point. The numbers Δ’

v
 are defined as

We define the corresponding set S’ as
                                                             (we use that any changes in the external part don’t affect the minimality of s)

where Λ is the set of all diagram lines,

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: the external part relative to s

The Hepp sector: α
1
≤α

2
≤…≤α

M
 .

τ is the maximal line number contained in at least one not-a-disk element of S.
In each term, s is the minimal not-a-disk element containing τ.
We also suppose that we take only the Taylor expansion terms of degree d’ on s, where d’≤ω’(s).
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We have to prove that S’ satisfies the following properties:
● The closure under union with an initial segment. The external order initial segment is {1,2,…,l}\s. 

Suppose                                                                           the set s’ is a maximal 1-particle irreducible 
set contained in s

0
, and the connectivity where s is shrunk to a point is implied. We have to prove 

that                         .
  There are two cases:
    1)                                            In this case, s’ is a maximal 1PI set contained in
                                                               where the connectivity of the original graph is implied.
          Thus, s’ in S. Since f(s’)=s’, it is also in S’.
    2)                                             In this case, f(s’) is a maximal 1PI set contained in
                                                                         where the connectivity of the original graph is implied.
           Thus,                 . This means that                         .

● The closure under intersection. Suppose                   the set s’ is a maximal 1PI set contained in 
and the connectivity where s is shrunk to a point is implied. We have to prove that 
     For proving this note that                        equals                   or                             the last case is 
possible only if                                                      Thus, f(s’) is a maximal 1PI set contained in 
                     , where the connectivity of the original graph is implied. This means that f(s’) in S. 

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: the external part relative to s
We have
where Λ is the set of all diagram lines,
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The following values contribute to the power of (α
j
/α

j+1
), if the conditions are satisfied:

                                 → +1/2;
                                 → +1/2;
     for each                                             →              ;
     for each                          such that                                          →              ;

     the shrunk s is in                                  →                                            ;

                               →                                                  ;

                                   →                                      never happens, because we have a requirement              or it gives 0 .

Here cycl
int

, cycl
ext 

are defined as cycl, but in the internal and external parts; the connectivity when s is shrunk to a 
point is implied in the external part.

Suppose we take the Taylor coefficient of degree d (the other case is analogous). 
The set of lines s splits the diagram into the external and internal part.
The Taylor expansion coefficients of degree d’ are taken for the internal part,                                      .
The estimation is valid for both parts. 

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: power counting
We have to prove that

where P is some polynomial giving positive values and non-decreasing with respect to Σα;
            is the set of all vertices v such that for any                    satisfying                        there exist a cycle (without 
self-intersections) in             that passes v;   

                                    if we take the Taylor expansion coefficients of degree d for the whole diagram G;         

                                       if we subtract up to the degree ω’(G).
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There are two cases:
●                        , where s is the set that separates the diagram into the external and internal parts. 

In this case, for all            such that                                        there exist a cycle in                        that 
passes v.
From this it follows that                                                .
Thus, v is counted in the internal part.

●                       .
In this case, for all                                                     such that              or 
there is a cycle in                       that passes v.
We can use this cycle for proving that                                                 , 
    the contained in s part of the cycle should be shrunk to a point.
Thus, v is counted in the external part.

Suppose                                      , where 
                 is the set of all vertices v such that for any                    satisfying                        
      there exist a cycle (without self-intersections) in             that passes v;   

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: power counting, Δ
v
/2

The definitions of cycl
int

 and cycl
ext

 repeat the definition of cycl, but in the internal and external parts, 
respectively.
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We also have two rules:

       the shrunk s is in                                  →                                            ;

                                 →                                                  ;

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: power counting, the case when s is contained in {1,2,…,j}

We have to prove that the “negative’’ rule is always compensated by the “positive’’ one
(-1/2 can’t be compensated, but we have an extra +1/2 for this case) .

Suppose                        . We have to prove that the shrunk s is in                                  . It is enough to prove 
that for each              such that            there exist a cycle in                          that has vertices in Vertex(s) as 
well as lines not in s (the needed cycle in the external part is obtained by shrinking the part of it inside s).
   

There are two cases:

● y is a disk generated by the initial segment {1,2,…,l
1
}. 

In this case, there exists a disk D generated by {1,2,…,min(l,l
1
)} that contains s and is contained in y. 

Since s is not a disk, s does not coincide with D; thus, there is a cycle in D that has vertexes in Vertex(s) 
as well as lines not in s. This cycle lies in {1,2,…,l}.

● y is not a disk.
In this case,                           [we use here that s contains the maximal line number contained in not-disks from S].

Since           and both of them are 1PI, there is a cycle in y that has vertices in Vertex(s) and lines not in s.
This cycle also lies in {1,2,…,l}.
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The remaining multipliers are:

●              is obtained exactly.

●                           is obtained exactly.

●                                is obtained exactly.

●                . After multiplying the internal and external part expressions we have

                                  . Since the polynomials are non-decreasing with respect to Σα and 
positive-valued, we can put                                                                   

The proof of the BPHZ theorem:
the elimination of overlaps

The proof by induction: the remaining multipliers

We have to prove that

     

     P is a polynomial giving positive values and non-decreasing with respect to Σα;
                                    if we take the Taylor expansion coefficients of degree d for the whole diagram G; 
                                    if we subtract up to the degree ω’(G).
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The ideas similar to ‘’minimax’’ or the induction hypothesis described here come from Klaus Hepp
     [K. Hepp, Commun. Math. Phys. 2, 301 (1966)]

There exist completely different approaches.

For example, based on the replacement the subtractions with differentiations for all the needed  
subdiagrams simultaneously.
     [S. A. Anikin, O. I. Zav'yalov, M. K. Polivanov, Theor. Math. Phys. 17, 1082–1088 (1973)]
     [M. C. Bergère, J. B. Zuber, Commun. math. Phys. 35, 113-140 (1974)]
The subtraction-free approach has applications for numerical calculations:
     [L. T. Adzhemyan, M. V. Kompaniets, Journal of Physics: Conference Series, 15th International Workshop on Advanced 
Computing and Analysis Techniques in Physics Research (ACAT2013), Vol. 523, 012049 (2014)]
          (the absence of subtractions prevents from round-off errors, but φ4-theory only)

A good test from QED for alternative approaches:

Each interval is divergent and needs a subtraction.

The proof of the BPHZ theorem:
the elimination of overlaps

Approaches to handling overlapping divergences
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem

- the formulation, ideas
- Schwinger-parametric integrals, combinatorial formulas
- power counting, Hepp sectors, ''Hanoi'' towers
- reduction to the forest formula with sets of lines
- elimination of overlaps
- the case when all the subtractions fit

● Conclusions
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The forest formula for obtaining F
SubL[S,Δ]

 can be expressed as

where                                , ω(s) is the UV degree of divergence of s, the operator         takes the Taylor 
expansion at the subdiagram s up to the degree ω’(s), the operator O

Λ
 takes the Taylor expansion 

coefficient of degree d for the whole diagram at zero momenta or equals               .

The base case: S is the set of all 1PI disks except the whole set Λ.

We will prove a stronger statement:

where h(s) is the thickness of the disk s; it equals α
j
/α

j+1
, if the disk is generated by {1,2,…,j}.

The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

The remaining part is the induction base case

     

     P is a polynomial giving positive values and non-decreasing with respect to Σα;
                                    if we take the Taylor expansion coefficients of degree d for the whole diagram G; 
                                    if we subtract up to the degree ω’(G).



 

[162] Sergey Volkov   sergey.volkov@partner.kit.edu 

The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

The idea: replace the subtractions with differentiations

The Taylor theorem with integral form of the remainder:

It works also for functions of many variables, only one χ is needed:
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Since the elements of S don’t overlap, it is easy to obtain the Feynman 
amplitude for fixed                                                   . 

To do it, we introduce the change of variables

where q
l
 is the momentum of the line l. The momenta q’ satisfy the

4-momentum conservation law. Thus, we can use the formulas for usual 
diagrams.

We have the factorized forest formula

To replace each subtraction with a differentiation by Taylor’s theorem with an integral remainder we 
have to introduce a parameter χ

s
 for each set of lines s for which we do the subtraction.

   

We need Feynman diagrams with converters on subdiagrams; each converter multiplies its external 
momenta by χ

s 
and transfers the multiplied momenta to the internal part.

The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

Feynman diagrams with momentum converters

Important! Each vertex polynomial P
v
 belongs to the minimal (with respect to inclusion) set

such that                            and uses its converted external momenta.  



 

[164] Sergey Volkov   sergey.volkov@partner.kit.edu 

The Schwinger-parametric amplitude with χ-converters

W(p,α,χ) is obtained as a sum (with coefficients) over all sets of nonintersecting pairs of the numerator and vertex 
multipliers. The multiplier corresponds to (l,μ), where l is a line number, μ is a coordinate index. The pair [(l,μ),(j,ν)] 
gives (B

lj
(α,χ)g

μν
)/U(α,χ), the unpaired multiplier (l,μ) gives ((Y

l
(p,α,χ))

μ
)/U(α,χ).

Each set of pairs gives an additional multiplier 

where (B
R
)

ab
=1, if a and b go in the same direction in the loop of R; -1 if in the opposite direction, 0 in the other cases.

The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector
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The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

The Schwinger-parametric integrand as an integral over χ

We have

We obtained this correct answer without thinking about the correctness of the reasoning.

It can be derived correctly immediately at the level of analytical formulas, but it is better to work with 
correctly defined integrals: first to prove an analogous equality for ε

Mink
>0 and then take the limit ε

Mink
→0. 

Problems can occur at both steps: the diagram momentum space depends on χ and can become degenerate 
as χ→0; the possibility to swap the operations with taking the limit ε

Mink
→0 also requires a justification.

To overcome this, one can introduce a χ-dependent loop integration basis S
Loop

[χ] in the following way:
● Take a 1-tree R such that Defect

s
(R)=0 for each s from S’ and the loop basis S

Loop
 based on R (loops are 

columns).
● Put 

In this case,

is separated from 0, a χ-dependent coefficient is not needed; everything becomes smooth and uniform. 
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The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

The powers of the disk thicknesses
We have

where W(p,α,χ) is constructed from the products of the blocks B(α,χ)/U(α) and Y(p,a,χ)/U(α) and powered χ.

The idea of power counting.
Suppose we took one term of W. Ignoring the part to the left from differentiations, we have before differentiation an 
expression of the form

After applying ∂
χ
 several times we obtain the sum of terms of the form

where the following conditions are satisfied:
● Each multiplier of χ type, Y/U type and B/U type corresponds (mutually exclusive) to the one of the original 

expression.
● For each s the total number of differentiations with respect to χ

s
 equals ω’(s)+1.

Note that:
● Each U, Y, V is the sum over graphs R, each term contains χ

s
 in the form                        . Thus, if we have n 

differentiations with respect to χ
s
 in the multiplier, only terms with Defect

s
(R)≥n/2 survive. 

● Analogously, in each B
ab 

only terms with Defect’
s
(R,a,b)≥n/2 survive.

● In the multipliers ∂
χ
...∂

χ
χ

s
 the differentiations only with respect to χ

s
 are allowed and no more than one.

● The multipliers (∂
χ
...∂

χ
V/U) are bounded by polynomials in p; the multipliers (∂

χ
...∂

χ
U/U) are bounded by 1.

Taking into account that each 1PI disk s has ω’(s)+1 differentiations with respect to χ
s
, we obtain the needed power of 

h(s). Not 1PI disks have the power 1 (before and after differentiation).
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The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

The power of α
M
 and the additional polynomial

We have

where W(p,α,χ) is constructed from the products of the blocks B(α,χ)/U(α) and Y(p,a,χ)/U(α) and powered χ.

Suppose O
Λ
 takes a Taylor expansion coefficient of degree d for the whole diagram.

Let us calculate the power of α
M 

, where M is the maximal line number (with maximal α).

The operator O
Λ
 consists of d differentiations with respect to p. Since before differentiations we had

after differentiations we have a sum of expressions 

where the following conditions are satisfied for one term:
● The total number of ∂

p
 is d.

● Each Y allows no more than 1 differentiation.
● Each V allows no more than 2 differentiations.

Taking into account that each V/U increases the power of α
M
 by 1, we obtain that the total power is z’≥z, 

where z is the needed power. In contrast to h(s), α
M
 can be >1. Thus, we need a polynomial:

                                      where n is an upper bound for z’-z.
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All the powers have been successfully calculated.
The estimation has been successfully proved:

where z≥1/2.

From this it follows that

We have to integrate the function over α. To do this, we make the change of variables

The absolute value of the integrand (over β) does not exceed

The corresponding integral, obviously, finite. The BPHZ theorem has been successfully proved.

The proof of the BPHZ theorem:
the case when all subtractions fit into the Hepp sector

The integration with respect to the Schwinger parameters α
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Outline
● Introduction
● General ideas of handling UV divergences
● Application to the renormalization of quantum electrodynamics
● Formulations in terms of finite integrals
● The proof of the BPHZ theorem
● Conclusions
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The BPHZ theorem: a literature
[N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 (1957)]

[K. Hepp, Commun. Math. Phys. 2, 301 (1966)]

[W. Zimmermann, Commun. Math. Phys. 15, 208 (1969)]

[V. A. Smirnov, Renormalization and Asymptotic Expansions, PPH’14, Progress in Mathematical 
Physics, Birkhäuser, 2000]

[O.I. Zavyalov, Renormalized Quantum Field Theory, Mathematics and Its Applications. Soviet 
Series, vol. 21, Kluwer, Dordrecht, Netherlands, 1990, 524 pp.]

[C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill Inc., 1980]

[N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, 
Moscow, 1984; Wiley, New York, 1980)] – the equivalence to an introduction of counterterms

[M. C. Bergère, J. B. Zuber, Commun. math. Phys. 35, 113-140 (1974)]

[S. A. Anikin, O. I. Zav'yalov, M. K. Polivanov, Theor. Math. Phys. 17, 1082–1088 (1973)]
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The BPHZ theorem: a discussion
All UV divergences can be removed in each Feynman diagram by a procedure that is 
equivalent to the renormalization.
  
● The theorem works for non-renormalizable theories as well.
● Subtractions at zero momenta are not obligatory: the handling overlaps does not use the structure of the 

operators at all; the reduction to differentiations is easily modifiable.
● The finiteness for each diagram leads to the finiteness of each coefficient in the perturbation series. 

However, the question about the whole series convergence remains open.
● These results do not provide the possibility to manipulate with finite objects needed for proving the gauge 

invariance at the level of Feynman diagrams and other symmetry properties. Additional tricks are required.
● All known proofs of the BPHZ theorem contain cumbersome combinatorics.
● Rigorously proved finiteness theorems that include also physical IR divergences don’t exist.

● Several papers prove also that the limit ε
IR

→0
 
 exists as a distribution. However, it is a distribution on the 

whole space of external 4-momenta, without taking into account that the external momenta are on the mass 
shell. Thus, this is useless.

● There exist theorems concerning non-physical IR divergences (that emerge, for example, when one uses a 
massless approximation for massive particles).
   [S.A. Anikin, O.I. Zavyalov, N.I. Karchev, Theor. Math. Phys. 44 (1980); Teor. Mat. Fiz. 44 (1980) 291]
   [J.H. Lowenstein, Commun. Math. Phys. 47 (1976) 53]
   [K.G. Chetyrkin, F.V. Tkachov, Phys. Lett. B 114 (1982) 340]
   [M.C. Bergere, Y.M.P. Lam, Commun. Math. Phys. 48 (1976) 267]

● All finiteness theorems concern the Feynman diagrams for scattering processes (or something close to it). 
There are no results in the form of equations of motion, processes in space-time and so on.
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