The CMS Road Map for the Discovery of the Higgs.

Michel Della Negra Imperial College, London and CERN, Geneva

Julius Wess Award Talk Karlsruhe, 1 February 2013

The standard model (SM) in the 80's

At the end of the years 1980 the UA1+UA2 community was prepared to jump to the next hadron collider to be installed in the existing LEP tunnel.

The SM was comforted by UA experiments:

•QCD : Jets abundantly produced and studied in gluon-gluon collisions

•EWK theory: W and Z discovered and properties studied.

Two fundamental pieces were missing:

- The Top:
 - $m_t < 200 \text{ GeV} \text{ (indirect LEP 1) ; } m_t > 77 \text{ GeV} \text{ (CDF)}$
- The Higgs:

 $m_H > 44 \text{ GeV} (\text{LEP 1}); m_H < 1 \text{ TeV} (\text{Theory} : WW scattering unitarity})$

No lose theorem: A machine able to probe WW scattering up to 1 TeV will either find the Higgs or discover new strong forces beyond the SM.

•The LHC project (16 GeV pp in LEP tunnel) was launched in the Aachen workshop in 1990 (Rubbia, Brianti). To compete with the SSC (40 TeV pp in Texas, USA) a very high luminosity (10³⁴ cm⁻²s⁻¹) was mandatory.

• First ideas on detectors able to work at 10³⁴ were discussed in the Aachen workshop.

Lessons from UA1

 Discovering W→ ev at UA1 (1981) was relatively easy: Electron: electromagnetic calorimeter + magnetic tracking Missing transverse energy: Hermetic Calorimeter

Electron E_T = 24 GeV well measured in em calorimeter + no visible jet on the away side (hadron calorimeter)

•Demonstrating $W \rightarrow \mu \nu$ was a lot more difficult!

High p_T muons suffer from poor momentum resolution: B=0.7T (dipole) $\pi \rightarrow \mu v$ decays can fake high p_T muons and induce fake missing transverse energy. Low pT muons on the other hand have an advantage over electrons. They can be detected inside jets: B physics at hadron collider was pioneered by UA1.

First ideas for an LHC detector:

- A robust and redundant muon detector is a priority.
- Muon detection is guaranteed at any luminosity (Iron Ball).
- Need a strong magnetic field (momentum resolution).

Design Criteria for the CMS Experiment

First conceptual design of a "Compact Muon Solenoid" (CMS) was presented in Aachen (1990) based on a 4 Tesla solenoid.

Compact Muon Solenoid

M. Della Negra, K. Eggert, M. Lanzagorta, M. Pimiä, F. Szoncso

- Very good muon identification and momentum measurement. $H \rightarrow ZZ$, with $Z \rightarrow \mu\mu$
- Most precise photon detector. $H \rightarrow \gamma \gamma$
- Powerful inner tracking systems for electron identification. H→ZZ, with Z→ee
- Hermetic calorimetry for missing E_T signatures. H \rightarrow WW, with W \rightarrow $\mu\nu$ or $e\nu$

Precise and Redundant Muon Detector

Strong Field 4T Compact design Solenoid for Muon P_t trigger in transverse plane Redundancy: 4 muon stations with 32 r-phi measurements $\Delta P_t/P_t \sim 5\% @ 1 \text{ TeV for}$ reasonable space resolution of muon

chambers (200µm)

Precise Photon Detector: PbWO4 Crystal Calorimeter

Tracking at LHC?

66 million silicon pixels: $100 \times 150 \ \mu m^2$ 9.3 million silicon microstrips: $80\mu m - 180\mu m$. ~200 m² of active silicon area (cf ~ 2m² in LEP detectors) ~13 precise position measurements (15 μm) per track.

Modular Design of CMS (A. Hervé)

CMS is sectionned in 5 barrel wheels, 6 endcap disks and 2 forward calorimeters: 13 pieces

Assembly in the surface hall

Waiting for the cavern to be ready

Empty Cavern ready: Feb 2005

Descent of the endcaps

Descent of the central wheel (2000 tons)

From Concept to Data Taking: 18 years

Silicon Tracker

Muon Chambers Letter of Intent (1992) Technical Proposal (1995) 10 Technical Design Reports (1997-2006) 3000 scientists from 40 countries

CMS cut in mid-plane

Scintillating Crystals

Hermetic Hadron Calorimeter: Brass plastic scintillator

Electrons and Muons

Dimuon mass resolution

Dielectron mass resolution

Searching for the Higgs in the four leptons final state

H→ZZ→ 4 leptons

Search for the SM Higgs boson in the yy channel

Mass resolution is the key for Higgs discovery in this channel

Target for the intercalibration < 0.5%

Michel Della Negra/Karlsruhe, Feb 1 2013

Energy Resolution dominated by calibrations!

Calibration of the crystals:

Crystal transparency correction (Laser monitoring)
inter-crystal calibration: π⁰, η

Energy scale stability (after response correction)

•Barrel: 0.12% (2.5% loss) •Endcap: 0.45% (10% loss)

Mass resolution of $\gamma\gamma$ system: Find the right vertex

•Algorithm to find the right vertex based on Σp_T^2 of tracks and $p_T^{\gamma\gamma}$ balance.

- •Tested on $Z \rightarrow \mu\mu$ events
- •Overall efficiency to find the right vertex for Higgs (m = 120 GeV) integrated over p_T spectrum: ~ 80%

Diphoton Candidate

Search in yy channel: event classification

	Exp Hig at 2	pected ggs events 125 GeV	Mass Resol. $\sigma_{\rm m}$ (GeV)	Background events/GeV	S/B
$7 \mathrm{TeV}$, 5.1 fb $^{-1}$	BDT 0	3.2	1.14	3.3 ± 0.4	0.28
	BDT 1	16.3	1.08	37.5 ± 1.3	0.13
	BDT 2	21.5	1.32	74.8 ± 1.9	0.07
	BDT 3	32.8	2.07	193.6 ± 3.0	0.03
	Dijet tag	2.9	1.37	1.7 ± 0.2	0.42
$8 \mathrm{TeV}$, 5.3 fb $^{-1}$	BDT 0	6.1	1.23	7.4 ± 0.6	0.22
	BDT 1	21.0	1.31	54.7 ± 1.5	0.22
	BDT 2	30.2	1.55	115.2 ± 2.3	0.05
	BDT 3	40.0	2.35	256.5 ± 3.4	0.02
	Dijet tight	2.6	1.57	1.3 ± 0.2	0.43
	Dijet loose	3.0	1.48	3.7 ± 0.4	0.18

Diphoton events are separated into categories of different expected S/B ratios, based on properties of the reconstructed photons and the presence of jets. Likelihood fits are performed separately for each category and combined.

γγ **Mass Distribution**

Background is estimated from the data by a polynomial fit.

An excess is observed consistent with a narrow resonance around 125 GeV mass at 4.1 σ

Mass measurement

• Combine information from the high resolution channels measurements, $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$

• Signal cross section for the channels left floating independently in the fit

M=125.8 ±0.4 (stat) ± 0.4 (syst) GeV

Other Channels

- Search for the Higgs in other decay modes : WW, bb and $\tau\tau$ has been performed.
- Combined significance at M_H =125.8 GeV: 6.9 σ
- Overall satisfactory level of compatibility of the individual channels to the SM cross section.
- Combined $\sigma/\sigma_{SM}=0.88\pm0.21$

MH=125.8 GeV	Expected (ơ)	Observed (ơ)
ZZ	5.0	4.5
γγ	2.8	4.1
WW	4.3	3.0
bb	2.2	1.8
ττ	2.5	1.5
Combination	7.8	6.9

Thank you!

KIT and Thomas Müller for the 2013 Julius Wess Award.
Peter Jenni for the friendly competition with ATLAS.
The CMS construction team:

- •Alain Hervé
- •Jim Virdee
- •Sergio Cittolin
- •Peter Sharp[†]
- •All Project Managers and Coordinators:

Tracker:	Rino Castaldi, Gigi Rolandi, Roland Horisberger,
	Thomas Müller, Stefan Schael, Geoff Hall
ECAL:	Hans Hofer, Jean-Louis Faure, Philippe Bloch, Paul Lecoq
HCAL:	Dan Green, Igor Golutvin
Muons:	Fabrizio Gasparini, Hans Reithler, Guenakh Mitselmakher,
	Pino Iaselli
Physics:	Daniel Denegri, Paris Sphicas