KSETA topical courses

Neutrino physics IV: Neutrinos and beyond Standard Model

Thomas Schwetz-Mangold

Karlsruhe, 7-8 Oct 2020

Neutrinos oscillate...

... and have mass \Rightarrow physics beyond the Standard Model

- Lecture I: Neutrino Oscillations
- Lecture II: Neutrinos in Cosmology
- Lecture III: Neutrino mass Dirac versus Majorana
- Lecture IV: Neutrinos and physics beyond the Standard Model

Neutrinos oscillate...

... and have mass \Rightarrow physics beyond the Standard Model

- ► Lecture I: Neutrino Oscillations
- ► Lecture II: Neutrinos in Cosmology
- Lecture III: Neutrino mass Dirac versus Majorana
- ► Lecture IV: Neutrinos and physics beyond the Standard Model

Outline - Neutrinos and physics beyond the SM

Giving mass to neutrinos Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

In the SM neutrinos are massless because...

- 1. there are no right-handed neutrinos to form a Dirac mass term
- 2. because of the field content (scalar sector) and gauge symmetry lepton number¹ is an accidental global symmetry of the SM and therefore no Majorana mass term can be induced.
- 3. restriction to renormalizable terms in the Lagrangian

¹B-L at the quantum level

In the SM neutrinos are massless because...

- 1. there are no right-handed neutrinos to form a Dirac mass term
- because of the field content (scalar sector) and gauge symmetry lepton number¹ is an accidental global symmetry of the SM and therefore no Majorana mass term can be induced.
- 3. restriction to renormalizable terms in the Lagrangian

¹B-L at the quantum level

Outline

Giving mass to neutrinos Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

Famous historical example:

Assume there is new physics at a high scale Λ . It will manifest itself by non-renormalizable operators suppressed by powers of Λ .

Famous historical example:

Assume there is new physics at a high scale Λ . It will manifest itself by non-renormalizable operators suppressed by powers of Λ .

In the 1930's Fermi did not know about W and Z bosons, but he could write down a non-renormalizable dimension-6 operator to describe beta decay:

$$\frac{g^2}{\Lambda^2}(\bar{e}\gamma_\mu\nu)(\bar{n}\gamma^\mu p)$$

- Fermi knew about charge conservation \rightarrow his operator is invariant under $U(1)_{\rm em}$
- ► Today we know that $\Lambda \simeq m_W$, and we know the UV completion of Fermi's operator, i.e. the electro-weak theory of the SM.

The Weinberg operator

Assume there is new physics at a high scale Λ . It will manifest itself by non-renormalizable operators suppressed by powers of Λ .

Weinberg 1979: there is only one dim-5 operator consistent with the gauge symmetry of the SM, and this operator will lead to a Majorana mass term for neutrinos after EWSB:

$$Y^2 \frac{\overline{L^c} \widetilde{\phi}^* \widetilde{\phi}^{\dagger} L}{\Lambda} \longrightarrow m_{\nu} \sim Y^2 \frac{\langle \phi \rangle^2}{\Lambda}$$

at dim-5 lepton number can be broken (above operator not invariant under $L
ightarrow e^{i lpha} L)$

The Weinberg operator

Assume there is new physics at a high scale Λ . It will manifest itself by non-renormalizable operators suppressed by powers of Λ .

Weinberg 1979: there is only one dim-5 operator consistent with the gauge symmetry of the SM, and this operator will lead to a Majorana mass term for neutrinos after EWSB:

$$Y^2 \frac{\overline{L^c} \widetilde{\phi}^* \widetilde{\phi}^{\dagger} L}{\Lambda} \longrightarrow m_{\nu} \sim Y^2 \frac{\langle \phi \rangle^2}{\Lambda}$$

Seesaw:

neutrinos are light because of the presence of the large energy scale $\Lambda \gg \langle \phi \rangle$

High-scale versus low-scale seesaw

$$m_{
u} \sim Y^2 rac{\langle \phi
angle^2}{\Lambda} pprox Y^2 rac{(178\,{
m GeV})^2}{\Lambda}$$

can obtain small neutrino masses by making Λ very large or Y very small (or both)

- ▶ High scale seesaw: $\Lambda \sim 10^{14}$ GeV, $Y \sim 1$
 - "natural" explanation of small neutrino masses
 - Leptogenesis
 - very hard to test experimentally
- ▶ Low scale seesaw: $\Lambda \sim \text{TeV}$. $Y \sim 10^{-6}$
 - link neutrino mass generation to new physics testable at colliders
 - observable signatures in searches for LFV

Neutrino physics IV 8 / 52

High-scale versus low-scale seesaw

$$m_{\nu} \sim Y^2 \frac{\langle \phi \rangle^2}{\Lambda} \approx Y^2 \frac{(178 \, {\rm GeV})^2}{\Lambda}$$

can obtain small neutrino masses by making Λ very large or Y very small (or both)

- ▶ High scale seesaw: $\Lambda \sim 10^{14}$ GeV, $Y \sim 1$
 - "natural" explanation of small neutrino masses
 - Leptogenesis
 - very hard to test experimentally
- ▶ Low scale seesaw: $\Lambda \sim \text{TeV}$, $Y \sim 10^{-6}$
 - ▶ link neutrino mass generation to new physics testable at colliders
 - lacktriangle observable signatures in searches for LFV

$$\mu \to e\gamma, \tau \to \mu\gamma, \mu \to eee, ...$$

The Weinberg operator

What is the new physics responsible for neutrino mass?

many realisations (too many?) are known: at tree-level:

- ► Type I: fermionic singlet (right-handed neutrinos)
- ► Type II: scalar triplet
- ► Type III: fermionic triplet

- ...a.ry externaca coonarroor
 - extended Higgs sector
 - realisations due to quantum effects (loop-induced)

The Weinberg operator

$$Y^2 \frac{\overline{L^c} \, \tilde{\phi}^* \, \tilde{\phi}^\dagger L}{\Lambda}$$

What is the new physics responsible for neutrino mass?

many realisations (too many?) are known:
at tree-level:
many exter

- ► Type I: fermionic singlet (right-handed neutrinos)
- Type II: scalar triplet
- ► Type III: fermionic triplet

- many extended scenarios:
 - extended Higgs sector
 - realisations due to quantum effects (loop-induced)

In the SM neutrinos are massless because...

- 1. there are no right-handed neutrinos to form a Dirac mass term
- 2. because of the field content (scalar sector) and gauge symmetry lepton number² is an accidental global symmetry of the SM and therefore no Majorana mass term can be induced.
- 3. restriction to renormalizable terms in the Lagrangian

²B-L at the quantum level

In the SM neutrinos are massless because...

- 1. there are no right-handed neutrinos to form a Dirac mass term
- because of the field content (scalar sector) and gauge symmetry lepton number² is an accidental global symmetry of the SM and therefore no Majorana mass term can be induced.
- 3. restriction to renormalizable terms in the Lagrangian

²B-L at the quantum level

Outline

Giving mass to neutrinos Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

What do we mean by "right-handed neutrino"?

A Majorana fermion field (2 dof) which is a singlet under the SM gauge group

- ▶ does not feel any of the gauge interactions of the SM, in particular also not the weak interaction ("sterile neutrino")
- ▶ note that a so-called "right-handed neutrino" contains a right-handed (N_R) and a left-handed (N_R^c) component

What do we mean by "right-handed neutrino"?

A Majorana fermion field (2 dof) which is a singlet under the SM gauge group

- does not feel any of the gauge interactions of the SM, in particular also not the weak interaction ("sterile neutrino")
- ▶ note that a so-called "right-handed neutrino" contains a right-handed (N_R) and a left-handed (N_R^c) component

What do we mean by "right-handed neutrino"?

A Majorana fermion field (2 dof) which is a singlet under the SM gauge group

- does not feel any of the gauge interactions of the SM, in particular also not the weak interaction ("sterile neutrino")
- ▶ note that a so-called "right-handed neutrino" contains a right-handed (N_R) and a left-handed (N_R^c) component

quarks:
$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
, u_R , d_R leptons: $L_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$, e_R , N_R

quarks:
$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
, u_R , d_R leptons: $L_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$, e_R , N_R

$$\mathcal{L}_{Y} = -\lambda_{e} \bar{L}_{L} \phi e_{R} - \lambda_{\nu} \bar{L}_{L} \tilde{\phi} N_{R} + \mathrm{h.c.}$$

EWSB
$$\rightarrow -m_e \bar{e}_L e_R - m_D \bar{\nu}_L N_R + \text{h.c.}$$

$$\tilde{\phi} \equiv i\sigma_2 \phi^*, \ m_e = \lambda_e \frac{v}{\sqrt{2}}, \ m_D = \lambda_\nu \frac{v}{\sqrt{2}}, \ \langle \phi \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right), \ v = 246 \ \text{GeV}$$

quarks:
$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
, u_R , d_R leptons: $L_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$, e_R , N_R

$$\mathcal{L}_{Y} = -\lambda_{e} \bar{L}_{L} \phi e_{R} - \lambda_{\nu} \bar{L}_{L} \tilde{\phi} N_{R} + \mathrm{h.c.}$$

EWSB
$$\rightarrow -m_e \bar{e}_L e_R - m_D \bar{\nu}_L N_R + \text{h.c.}$$

$$\tilde{\phi} \equiv i\sigma_2 \phi^*, \ m_e = \lambda_e \frac{v}{\sqrt{2}}, \ m_D = \lambda_\nu \frac{v}{\sqrt{2}}, \ \langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \ v = 246 \text{ GeV}$$

SM + Dirac neutrinos:

- $\lambda_{\nu} \leq 10^{-11} \text{ for } m_D \leq 1 \text{ eV } (\lambda_e \sim 10^{-6})$
- \triangleright why is there no Majorana mass term for N_R ? ⇒ have to impose lepton number conservation as additional ingredient of the theory to forbid Majorana mass

- ▶ Majorana mass term $\frac{M_R}{2}N_R^TC^{-1}N_R$ is allowed by gauge symmetry
- ▶ However, $M_R = 0$ is technically natural (protected by Lepton number)
 - the symmetry of the Lagrangian is increased by setting $M_R=0$
 - $ightharpoonup M_R$ will remain zero to all loop order
- Also the Yukawas λ_{ν} are protected (chiral symmetry) tiny values are technically natural
- The values $M_R=0$ and $\lambda_{\nu}\sim 10^{-11}$ are considered "special" and/or "unaesthetic" by many theorists...

- ▶ Majorana mass term $\frac{M_R}{2}N_R^TC^{-1}N_R$ is allowed by gauge symmetry
- ▶ However, $M_R = 0$ is technically natural (protected by Lepton number)
 - the symmetry of the Lagrangian is increased by setting $M_R = 0$
 - M_R will remain zero to all loop order
- Also the Yukawas λ_{ν} are protected (chiral symmetry) tiny values are technically natural
- ▶ The values $M_R=0$ and $\lambda_{\nu}\sim 10^{-11}$ are considered "special" and/or "unaesthetic" by many theorists...

- ▶ Majorana mass term $\frac{M_R}{2}N_R^TC^{-1}N_R$ is allowed by gauge symmetry
- ▶ However, $M_R = 0$ is technically natural (protected by Lepton number)
 - the symmetry of the Lagrangian is increased by setting $M_R = 0$
 - M_R will remain zero to all loop order
- Also the Yukawas λ_{ν} are protected (chiral symmetry) tiny values are technically natural
- ► The values $M_R=0$ and $\lambda_{\nu}\sim 10^{-11}$ are considered "special" and/or "unaesthetic" by many theorists...

- ▶ Majorana mass term $\frac{M_R}{2}N_R^TC^{-1}N_R$ is allowed by gauge symmetry
- ▶ However, $M_R = 0$ is technically natural (protected by Lepton number)
 - the symmetry of the Lagrangian is increased by setting $M_R = 0$
 - M_R will remain zero to all loop order
- Also the Yukawas λ_{ν} are protected (chiral symmetry) tiny values are technically natural
- ► The values $M_R=0$ and $\lambda_{\nu}\sim 10^{-11}$ are considered "special" and/or "unaesthetic" by many theorists...

Charge quantization in the SM

Babu, Mohapatra, 89,90; Foot, Lew, Volkas, hep-ph/9209259

charge in the SM:
$$Q = (I_3 + Y/2)$$
 (for $y_{\phi} = 1$)

how to chose hyper-charges of fermions (SM, 1 gen): $y_{Q_1}, y_{u_R}, y_{d_R}, y_L, y_{e_R}$?

gauge invariance of Yukawa terms:

$$y_{Q_L} = 1 + y_{d_R}, \quad y_{Q_L} = -1 + y_{u_R}, \quad y_L = 1 + y_{e_R}$$

gauge anomaly cancellations:

$$SU(2)^2U(1): Y_{Q_L} = -y_L/3, \quad U(1)^3: Y_L = -1$$

Charge quantization in the SM

Babu, Mohapatra, 89,90; Foot, Lew, Volkas, hep-ph/9209259

charge in the SM:
$$Q = (I_3 + Y/2)$$
 (for $y_{\phi} = 1$)

how to chose hyper-charges of fermions (SM, 1 gen): $y_{Q_1}, y_{U_2}, y_{d_3}, y_1, y_{e_3}$?

gauge invariance of Yukawa terms:

$$y_{Q_L} = 1 + y_{d_R}, \quad y_{Q_L} = -1 + y_{u_R}, \quad y_L = 1 + y_{e_R}$$

gauge anomaly cancellations:

$$SU(2)^2U(1): Y_{Q_L} = -y_L/3, \quad U(1)^3: Y_L = -1$$

 \Rightarrow 5 constraints for 5 unknowns \Rightarrow unique solution "charge quantization" in the SM (1 gen. no N_R)

$$y_{Q_L} = 1/3$$

 $y_{u_R} = 4/3$
 $y_{d_R} = 2/3$

$$y_L = -1$$
$$y_{e_P} = -2$$

T. Schwetz (KIT)

$$y_{Q_L} = 1/3 - y_N/3$$
 $y_L = -1 + y_N$
 $y_{u_R} = 4/3 - y_N/3$ $y_{e_R} = -2 + y_N$
 $y_{d_R} = 2/3 - y_N/3$

► SM + Dirac N_R : Yukawa and $U(3)^3$ same cond.: $y_L = -1 + y_N$ no additional constraint: 5 constraints for 6 unknowns \Rightarrow y_N arbitr.: "charge dequantization" reason: U(B-L) is anomaly free symmetry

Neutrino physics IV 16 / 52

$$y_{Q_L} = 1/3 - y_N/3$$
 $y_L = -1 + y_N$
 $y_{u_R} = 4/3 - y_N/3$ $y_{e_R} = -2 + y_N$
 $y_{d_R} = 2/3 - y_N/3$

- ► SM + Dirac N_R : Yukawa and $U(3)^3$ same cond.: $y_L = -1 + y_N$ no additional constraint: 5 constraints for 6 unknowns \Rightarrow y_N arbitr.: "charge dequantization" reason: U(B-L) is anomaly free symmetry
- ▶ SM + Maj. N_R : U(B-L) broken by mass term $m_N N_P^T C^{-1} N_R \rightarrow v_N = 0 \Rightarrow$ charge quantized

$$y_{Q_L} = 1/3 - y_N/3$$
 $y_L = -1 + y_N$
 $y_{u_R} = 4/3 - y_N/3$ $y_{e_R} = -2 + y_N$
 $y_{d_R} = 2/3 - y_N/3$

- ▶ SM + Dirac N_R : Yukawa and $U(3)^3$ same cond.: $y_L = -1 + y_N$ no additional constraint: 5 constraints for 6 unknowns ⇒ y_N arbitr.: "charge dequantization" reason: U(B-L) is anomaly free symmetry
- ► SM + Maj. N_R : U(B-L) broken by mass term $m_N N_R^T C^{-1} N_R \rightarrow y_N = 0 \Rightarrow$ charge quantized
- ▶ SM (3 gen, no N_R + gravitational anomaly): $(L_e L_\mu), (L_\mu L_\tau), (L_e L_\tau)$ anomaly free \rightarrow dequantization
- ► SM (3 gen, Maj. N_R): Majorana mass breaks all U(1)'s \rightarrow charge quantization

Neutrinoless double beta decay

search for lepton-number violation via $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

- absent for Dirac neutrinos
- ► rate of the process is proportional to $m_{ee} = |\sum_i U_{ei}^2 m_i|$

Neutrinoless double beta decay

BUT: the process $(A, Z) \rightarrow (A, Z + 2) + 2e^-$ can be mediated by other mechanisms than neutrino mass:

Neutrinoless double beta decay

BUT: the process $(A, Z) \rightarrow (A, Z + 2) + 2e^-$ can be mediated by other mechanisms than neutrino mass:

Higgs triplet

see e.g., W. Rodejohan, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334]

Neutrinoless double beta decay

BUT: the process $(A, Z) \rightarrow (A, Z + 2) + 2e^-$ can be mediated by other mechanisms than neutrino mass:

 N_R and W_R in left-right symmetric models

see e.g., W. Rodejohan, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334]

Neutrinoless double beta decay

BUT: the process $(A, Z) \rightarrow (A, Z + 2) + 2e^-$ can be mediated by other mechanisms than neutrino mass:

SUSY with R-parity violation

see e.g., W. Rodejohan, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334]

Schechter-Valle theorem

- ▶ an observation of neutrinoless DBD $(A, Z) \rightarrow (A, Z + 2) + 2e^-$ proves that L-number is violated
- ► this implies "Majorana nature" of neutrinos Schechter, Valle, 1982; Takasugi, 1984

If neutrinoless DBD is observed, it is not possible to find a symmetry which forbids a Majorana mass term for neutrinos \Rightarrow in a "natural" theory a Majorana mass will be induced at some level.

 in practice, however, the Majorana mass may still be tiny e.g., Duerr, Lindner, Merle, 2011

Let's add N_R and allow for lepton number violation

$$\mathcal{L}_{Y} = -\lambda_{e} \bar{L}_{L} \phi e_{R} - \lambda_{\nu} \bar{L}_{L} \tilde{\phi} N_{R} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

Let's add N_R and allow for lepton number violation

$$\mathcal{L}_{Y} = -\lambda_{e} \bar{L}_{L} \phi e_{R} - \lambda_{\nu} \bar{L}_{L} \tilde{\phi} N_{R} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

What is the value of M_R ?

Let's add N_R and allow for lepton number violation

$$\mathcal{L}_{Y} = -\lambda_{e} \overline{L}_{L} \phi e_{R} - \lambda_{\nu} \overline{L}_{L} \widetilde{\phi} N_{R} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

What is the value of M_R ?

We do not know!

There is no guidance from the SM itself because N_R is a gauge singlet M_R is a new scale in the theory, the scale of BSM physics

Right-handed neutrinos at which scale?

The Dirac+Majorana mass matrix

$$\mathcal{L}_{Y} = -\lambda_{\nu} \bar{L}_{L} \tilde{\phi} N_{R} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

$$\mathsf{EWSB} \rightarrow \quad \mathcal{L}_{\mathcal{M}} = -m_{D} \bar{N}_{R} \nu_{L} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

$$\mathsf{using} \quad \psi^{T} C^{-1} = -\overline{\psi^{c}} \,, \quad \psi^{c} \equiv C \overline{\psi}^{T}$$

$$\Rightarrow \quad \mathcal{L}_{\mathcal{M}} = \frac{1}{2} n^{T} C^{-1} \left(\begin{array}{c} 0 & m_{D}^{T} \\ m_{D} & M_{R} \end{array} \right) n + \text{h.c.} \quad \mathsf{with} \quad n \equiv \left(\begin{array}{c} \nu_{L} \\ N_{R}^{c} \end{array} \right)$$

The Dirac+Majorana mass matrix

$$\mathcal{L}_{Y} = -\lambda_{\nu} \bar{L}_{L} \tilde{\phi} N_{R} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

$$\mathsf{EWSB} \rightarrow \quad \mathcal{L}_{\mathcal{M}} = -m_{D} \bar{N}_{R} \nu_{L} + \frac{1}{2} N_{R}^{T} C^{-1} M_{R}^{*} N_{R} + \text{h.c.}$$

$$\mathsf{using} \quad \psi^{T} C^{-1} = -\overline{\psi^{c}} \,, \quad \psi^{c} \equiv C \overline{\psi}^{T}$$

$$\Rightarrow \mathcal{L}_{\mathcal{M}} = \frac{1}{2} n^{T} C^{-1} \begin{pmatrix} 0 & m_{D}^{T} \\ m_{D} & M_{R} \end{pmatrix} n + \text{h.c.} \quad \text{with} \quad n \equiv \begin{pmatrix} \nu_{L} \\ N_{R}^{c} \end{pmatrix}$$

 ν_L contains 3 SM neutrino fields, N_R can contain any number r of fields $(r \geq 2 \text{ if this is the only source for neutrino mass, often } r = 3)$

 m_D is a general $3 \times r$ complex matrix, M_R is a symmetric $r \times r$ matrix

let's assume $m_D \ll M_R$, then the mass matrix $\begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix}$ can be approximately block-diagonalized to

$$\left(egin{array}{cc} m_
u & 0 \ 0 & M_R \end{array}
ight) \quad ext{with} \quad m_
u = -m_D^T M_R^{-1} m_D \sim -rac{m_D^2}{M_R}$$

where m_{ν} is the induced Majorana mass matrix for the 3 SM neutrinos.

let's assume $m_D \ll M_R$, then the mass matrix $\begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix}$ can be approximately block-diagonalized to

$$\left(egin{array}{cc} m_
u & 0 \ 0 & M_R \end{array}
ight) \quad ext{with} \quad m_
u = -m_D^T M_R^{-1} m_D \sim -rac{m_D^2}{M_R}$$

where m_{ν} is the induced Majorana mass matrix for the 3 SM neutrinos.

Seesaw:

 ν_L are light because N_R are heavy

let's assume $m_D \ll M_R$, then the mass matrix $\begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix}$ can be approximately block-diagonalized to

$$\left(egin{array}{cc} m_
u & 0 \ 0 & M_R \end{array}
ight) \quad ext{with} \quad m_
u = -m_D^T M_R^{-1} m_D \sim -rac{m_D^2}{M_R}$$

where m_{ν} is the induced Majorana mass matrix for the 3 SM neutrinos. $m_D = \lambda v/\sqrt{2}$

▶ assuming $\lambda \sim 1$ we need $M_R \sim 10^{14}$ GeV for $m_\nu \lesssim 1$ eV very high scale - close to $\Lambda_{\rm GUT} \sim 10^{16}$ GeV GUT origin of neutrino mass?

let's assume $m_D \ll M_R$, then the mass matrix $\begin{pmatrix} 0 & m_D^I \\ m_D & M_R \end{pmatrix}$ can be approximately block-diagonalized to

$$\left(egin{array}{cc} m_
u & 0 \ 0 & M_R \end{array}
ight) \quad ext{with} \quad m_
u = -m_D^T M_R^{-1} m_D \sim -rac{m_D^2}{M_R}$$

where m_{ν} is the induced Majorana mass matrix for the 3 SM neutrinos. $m_D = \lambda v/\sqrt{2}$

- ▶ assuming $\lambda \sim 1$ we need $M_R \sim 10^{14}$ GeV for $m_\nu \lesssim 1$ eV very high scale close to $\Lambda_{\rm GUT} \sim 10^{16}$ GeV GUT origin of neutrino mass?
- ▶ m_D could be lower, e.g., $m_D \sim m_e \Rightarrow M_R \sim \text{TeV}$ potentially testable at collider experiments like LHC

dilepton (or multi-lepton) events, e.g.:

- ▶ lepton number violating: $\ell^{\pm}\ell^{\pm} + \text{jets}$
- ▶ lepton flavour violating: $\ell_{\alpha}^{\pm}\ell_{\beta}^{\mp} + \mathrm{jets}$

- ▶ in type-I seesaw N production is proportional to Y^2 $Y \sim 10^{-6}$ for $M_N \sim \text{TeV} \rightarrow \text{negligible}$
- ▶ invoke cancellations in $m_{\alpha\beta}^{\nu} \propto \sum_{i} Y_{\alpha i} Y_{\beta i} / M_{i}$ to obtain large Y cancellations motivated by symmetry (lepton number) \rightarrow decouple LHC signature from light neutrino mass Kersten, Smirnov, 07
- ▶ give N_R new interactions beyond the SM gauge interactions ex.: W_R in L-R symmetric models Keung, Senjanovic, 83

- ▶ in type-I seesaw N production is proportional to Y^2 $Y \sim 10^{-6}$ for $M_N \sim \text{TeV} \rightarrow \text{negligible}$
- invoke cancellations in $m_{\alpha\beta}^{\nu} \propto \sum_{i} Y_{\alpha i} Y_{\beta i} / M_{i}$ to obtain large Y cancellations motivated by symmetry (lepton number) \rightarrow decouple LHC signature from light neutrino mass Kersten, Smirnov, 07
- ▶ give N_R new interactions beyond the SM gauge interactions ex.: W_R in L-R symmetric models Keung, Senjanovic, 83

- ▶ in type-I seesaw N production is proportional to Y^2 $Y \sim 10^{-6}$ for $M_N \sim \text{TeV} \rightarrow \text{negligible}$
- invoke cancellations in $m_{\alpha\beta}^{\nu} \propto \sum_{i} Y_{\alpha i} Y_{\beta i} / M_{i}$ to obtain large Y cancellations motivated by symmetry (lepton number) \rightarrow decouple LHC signature from light neutrino mass Kersten, Smirnov, 07
- ▶ give N_R new interactions beyond the SM gauge interactions ex.: W_R in L-R symmetric models Keung, Senjanovic, 83

Type-I seesaw

Type-I seesaw with 2 or 3 heavy right-handed neutrinos ($M_R \gtrsim 10^{10}$ GeV) is considered as "standard paradigm"

- (+) "simple" extension of the SM field content
- (+) "natural" explanation of smallness of neutrino mass
- (+) "simple" implementation of Leptogenesis
- $(-)\,$ hard to "prove" no specific experimental signatures

Type-I seesaw

Type-I seesaw with 2 or 3 heavy right-handed neutrinos ($M_R \gtrsim 10^{10}$ GeV) is considered as "standard paradigm"

- (+) "simple" extension of the SM field content
- (+) "natural" explanation of smallness of neutrino mass
- (+) "simple" implementation of Leptogenesis
- (-) hard to "prove" no specific experimental signatures

ν MSM Shaposhnikov,...

variant of type-I seesaw

- (+) one N_R with $M_R \sim 1$ kev \rightarrow provides Dark Matter (warm DM)
- (+) two N_R with $M_R \sim 1$ GeV ightarrow provide neutrino mass and Leptogenesis
- (+) does not require new physics up to the Planck scale
- (-) requires tuning parameters to special values (e.g., tiny Yukawas, highly degenerate N_R)
- (-) invokes "intricate" mechanism for DM generation and Leptogenesis

ν MSM Shaposhnikov,...

variant of type-I seesaw

- (+) one N_R with $M_R \sim 1$ kev o provides Dark Matter (warm DM)
- (+) two N_R with $M_R \sim 1$ GeV ightarrow provide neutrino mass and Leptogenesis
- (+) does not require new physics up to the Planck scale
- (-) requires tuning parameters to special values (e.g., tiny Yukawas, highly degenerate N_R)
- (-) invokes "intricate" mechanism for DM generation and Leptogenesis

In the SM neutrinos are massless because...

- 1. there are no right-handed neutrinos to form a Dirac mass term
- 2. because of the field content (scalar sector) and gauge symmetry lepton number³ is an accidental global symmetry of the SM and therefore no Majorana mass term can be induced.
- 3. restriction to renormalizable terms in the Lagrangian

³B-L at the quantum level

In the SM neutrinos are massless because...

- 1. there are no right-handed neutrinos to form a Dirac mass term
- 2. because of the field content (scalar sector) and gauge symmetry lepton number³ is an accidental global symmetry of the SM and therefore no Majorana mass term can be induced.
- 3. restriction to renormalizable terms in the Lagrangian

We do not need right-handed neutrinos to give mass to $\nu_L!$

³B-L at the quantum level

Outline

Giving mass to neutrinos Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

Extending the scalar sector of the SM

fermionic bilinears from SM leptons considering $SU(2)_L$ quantum numbers

Konetschny, Kummer, 1977; Cheng, Li, 1980

Extending the scalar sector of the SM

fermionic bilinears from SM leptons considering $SU(2)_L$ quantum numbers

Konetschny, Kummer, 1977; Cheng, Li, 1980

- ▶ SU(2) triplet Higgs: $\Delta \rightarrow m_{\nu}$ at tree level ("type-II seesaw")
- ▶ one SU(2) singlet scalar with charge 1 and a second Higgs doublet $h^+, \phi' \to m_{\nu}$ at 1-loop level ("Zee model")
- ▶ two SU(2) singlet scalars with charge 1 and charge 2 $h^+, k^{++} \rightarrow m_{\nu}$ at 2-loop level ("Zee–Babu model")

Higgs-triplet / Type-II Seesaw

Let's add a triplet \triangle under SU(2)_L to the SM:

$$\mathcal{L}_{\Delta} = f_{ab} L_a^T C^{-1} i \tau_2 \Delta L_b + \text{h.c.},$$

$$\Delta = \begin{pmatrix} H^+/\sqrt{2} & H^{++} \\ H^0 & -H^+/\sqrt{2} \end{pmatrix}$$

The VEV of the neutral component $\langle H^0 \rangle \equiv v_T / \sqrt{2}$ induces a Majorana mass term for the neutrinos:

$$\frac{1}{2}\nu_{La}^T C^{-1} m_{ab}^{\nu} \nu_{Lb} + \text{h.c.} \qquad \text{with} \qquad m_{ab}^{\nu} = \sqrt{2} \, v_T \, f_{ab}$$

Type-II Seesaw

$$m_{ab}^{\nu} = \sqrt{2} \, v_T \, f_{ab} \lesssim 10^{-10} \, {
m GeV}$$

scalar potential:
$$\mathcal{L}_{\mathsf{scalar}}(\phi, \Delta) = -\frac{1}{2} M_{\Delta}^2 \mathsf{Tr} \Delta^{\dagger} \Delta + \mu \phi^{\dagger} \Delta \tilde{\phi} + \dots$$

 μ -term violates lepton number (Δ has L=-2)

minimisation of potential:
$$v_T \simeq \mu \frac{v^2}{M_\Lambda^2}$$

Type-II Seesaw

$$m_{ab}^{\nu} = \sqrt{2} \, v_T \, f_{ab} \lesssim 10^{-10} \, {
m GeV}$$

scalar potential:
$$\mathcal{L}_{\mathsf{scalar}}(\phi, \Delta) = -\frac{1}{2} \mathcal{M}_{\Delta}^2 \mathsf{Tr} \Delta^{\dagger} \Delta + \mu \phi^{\dagger} \Delta \tilde{\phi} + \dots$$

 μ -term violates lepton number (Δ has L=-2)

minimisation of potential: $v_T \simeq \mu \frac{v^2}{M_A^2}$

Type-II seesaw: heavy triplet

$$\mu \sim M_{\Delta} \sim 10^{14}\,{
m GeV} \qquad \Rightarrow \qquad v_T \sim rac{v^2}{M_{\Delta}} \sim m^{
u}\,,\; f_{ab} \sim {\cal O}(1)$$

Type-II Seesaw

$$m_{ab}^{\nu} = \sqrt{2} \, v_T \, f_{ab} \lesssim 10^{-10} \, \mathrm{GeV}$$

scalar potential:
$$\mathcal{L}_{\mathsf{scalar}}(\phi, \Delta) = -\frac{1}{2} M_{\Delta}^2 \mathsf{Tr} \Delta^{\dagger} \Delta + \mu \phi^{\dagger} \Delta \tilde{\phi} + \dots$$

 μ -term violates lepton number (Δ has L=-2)

minimisation of potential:
$$v_T \simeq \mu \frac{v^2}{M_\Lambda^2}$$

triplet at the EW scale
$$\mathcal{O}(100 \text{ GeV})$$
: $M_{\Delta} \sim v \quad \Rightarrow \quad v_T \sim \mu$ need combination of "small" μ and "small" f_{ab}

The triplet at LHC

$$pp \to Z^*(\gamma^*) \to H^{++}H^{--} \to \ell^+\ell^+\ell^-\ell^-$$

doubly charged component of the triplet:

$$\Delta = \begin{pmatrix} H^+/\sqrt{2} & H^{++} \\ H^0 & -H^+/\sqrt{2} \end{pmatrix}$$

very clean signature: two like-sign lepton paris with the same invariant mass and no missing transverse momentum; practically no SM background

Decays of the triplet:

$$\Gamma(H^{++}
ightarrow \ell_a^+ \ell_b^+) = rac{1}{4\pi (1+\delta_{ab})} |f_{ab}|^2 M_{\Delta} \,,$$

⇒ proportional to the elements of the neutrino mass matrix!

L-R symmetric theories

Type I+II seesaw:

assume
$$N_R$$
, Δ_L , Δ_R

 $\langle \Delta_L
angle$ gives Majorana mass term for u_L $\langle \Delta_R
angle$ gives Majorana mass term for N_R Yukawa with Higgs gives Dirac mass term

$$\begin{pmatrix} M_L & m_D^T \\ m_D & M_R \end{pmatrix} \quad \Rightarrow \quad m_\nu = M_L - m_D^T M_R^{-1} m_D$$

assuming $M_L \ll m_D \ll M_R$

SO(10) grand unified theory

▶ 16-dim representation contains all SM fermions $+ N_R$

$$(q_L \ u_R \ d_R \ L_L \ \ell_R \ N_R)$$
6 3 3 2 1 1 **16**

- ▶ 126-dim scalar representation
 - ▶ needed to break SO(10) down to the SM gauge group
 - contains triplets under $SU(2)_L$ and $SU(2)_R$
 - \rightarrow natural framework for type-I and type-II seesaw
- seesaw scale $M_{\Lambda}, M_R \sim M_{\rm GUT} \sim 10^{16}$ GeV

Mohapatra, Senjanovic,...

Radiative neutrino mass models

- ▶ neutrino mass vanishes at tree level, generated radiatively at n-loop order
- suppression by coupling constants and loop factors
- new physics cannot be too heavy, typically around TeV
- testable at colliders, charged lepton flavour violation

review: Cai, Herrero-Garcia, Schmidt, Vicente, Volkas, 1706.08524

Zee model (1-loop) Zee, 1980

introduce singly charged scalar h^+ and second Higgs doublet ϕ'

$$\mathcal{L}_{\nu} = \mathbf{f}_{\alpha\beta} \mathbf{L}_{\alpha}^{\mathsf{T}} \mathsf{C} i \sigma_2 \mathbf{L}_{\beta} \mathbf{h}^{+} + \mu \mathbf{h}^{+} \phi^{\dagger} \tilde{\phi}' + \text{h.c.}$$

$$m_
u \sim rac{\mu}{(4\pi)^2} f rac{m_\ell^2}{m_h^2}$$

simplest version excluded, more complicated versions OK Balaji, Grimus, Schwetz, 01; Herrero-Garcia, Ohlsson, Riad, Wiren, 17 rich phenomenology for LHC, FCNC, LFV $\mu \to e\gamma, \tau \to \mu\gamma, \mu \to eee, \dots$

Zee-Babu model (2-loop) Zee, 85, 86; Babu 88

introduce SU(2)-singlet scalars: h^+, k^{++}

$$\mathcal{L}_{\nu} = \mathbf{f}_{\alpha\beta} \mathbf{L}_{\alpha}^{\mathsf{T}} \mathbf{C}^{-1} i \sigma_2 \mathbf{L}_{\beta} h^+ + \mathbf{g}_{\alpha\beta} \overline{\mathbf{e}_{R\alpha}^{\mathsf{c}}} \mathbf{e}_{R\beta} k^{++} + \mu h^- h^- k^{++} + \text{h.c.}$$

$$\mathit{m}_{\nu} \approx \frac{\mu}{48\pi^{2}\mathit{m}_{\mathit{k}}^{2}} \, \mathit{f} \, \mathit{m}_{\ell} \, \mathit{g}^{*} \, \mathit{m}_{\ell} \, \mathit{f}^{T}$$

good prospects to see doubly-charged scalar at LHC \rightarrow like-sign lepton events if k^{++} is within reach for LHC, tight constrains by perturbativity requirements and bounds from LFV Babu, Macesanu, 02; Aristizabal, Hirsch, 06; Nebot et al., 07; Schmidt, TS, Zhang, 14; Herrero-Garcia, Nebot, Rius, Santamaria, 14

T. Schwetz (KIT) Neutrino physics IV 37 / 52

Combining neutrino mass with Dark Matter

"scotogenic" model E. Ma, hep-ph/0601225

- version of inert Higgs doublet model
- ightharpoonup SM + 2nd Higgs doublet η + right-handed neutrinos N
- η and N are odd under a discrete Z₂ symmetry
 ⇒ the lightest of them is a DM candidate
- neutrino masses generated at 1-loop:

many many variants discussed in literature

T. Schwetz (KIT) Neutrino physics IV 38 / 52

TeV scale neutrino mass

- (+) potentially test neutrino mass mechanism at LHC
- (+) typically signatures in LFV $\mu \to e\gamma, \tau \to \mu\gamma, \mu \to eee, ...$
- (+) radiative models explain smallness of neutrino mass by loop-factors
- (+) in general, for mass generation at n-loop order one needs to explain the absence of all terms at order $< n \rightarrow$ invoke symmetry (can be used for stabilizing a DM candidate, e.g., Ma, 06)
- (-) often TeV models appear ad-hoc and somewhat unmotivated

TeV scale neutrino mass

- (+) potentially test neutrino mass mechanism at LHC
- (+) typically signatures in LFV $\mu \to e\gamma, \tau \to \mu\gamma, \mu \to eee, ...$
- (+) radiative models explain smallness of neutrino mass by loop-factors
- (+) in general, for mass generation at n-loop order one needs to explain the absence of all terms at order $< n \rightarrow$ invoke symmetry (can be used for stabilizing a DM candidate, e.g., Ma, 06)
- (-) often TeV models appear ad-hoc and somewhat unmotivated

Automatized neutrino mass model building

Gargalionis, Volkas, 2009.13537; refs therein

- write down complete list of $\Delta L = 2$ operators
- systematically search for all possible UV completions (models)

Outline

Giving mass to neutrinos
Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

the asymmetry between baryons and antibaryons in the Universe is

$$\eta_B \equiv (n_B - n_{\bar{B}})/n_{\gamma} pprox 6 imes 10^{-10}$$
 CMB+BAO, BBN

baryons: $+ 10\ 000\ 000\ 006$ antibaryons: $- 10\ 000\ 000\ 000$

the asymmetry between baryons and antibaryons in the Universe is

$$\eta_B \equiv (n_B - n_{\bar{B}})/n_\gamma \approx 6 \times 10^{-10} \text{ CMB+BAO, BBN}$$

baryons: + 10 000 000 006 antibaryons: - 10 000 000 000 us: 6

the asymmetry between baryons and antibaryons in the Universe is

$$\eta_B \equiv (n_B - n_{\bar{B}})/n_{\gamma} \approx 6 \times 10^{-10} \text{ CMB+BAO, BBN}$$

BUT: in the SM this is a HUGE number

- 3 Sacharow conditions:
 - out of equilibrium processes [SC1]
 - CP violation [SC2]
 - violation of Baryon number [SC3]

Are fulfilled in the SM, but $\eta_B^{\rm SM}$ is many orders of magnitude too small!

the asymmetry between baryons and antibaryons in the Universe is

$$\eta_B \equiv (n_B - n_{\bar{B}})/n_\gamma \approx 6 imes 10^{-10}$$
 CMB+BAO, BBN

```
baryons: + 10 000 000 006
antibaryons: - 10 000 000 000
us: 6
```

BUT: in the SM this is a HUGE number

3 Sacharow conditions:

- out of equilibrium processes [SC1]
- CP violation [SC2]
- ▶ violation of Baryon number [SC3]

Are fulfilled in the SM, but $\eta_B^{\rm SM}$ is many orders of magnitude too small!

⇒ requires physics beyond the SM

Leptogenesis

M. Fukugita, T. Yanagida, Phy. Lett. B174, 45 (1986) assume type-I seesaw with heavy ($\sim 10^{10}$ GeV) right-handed neutrinos N

- out of equilibrium decay of $N o \phi \ell$ [SC1]
- ► CP asymmetry in N decays: $\Gamma(N \to \phi^+ \ell^-) \neq \Gamma(N \to \phi^- \ell^+)$ [SC2] due to tree- and loop-level interference

net-lepton number *L* is generated

▶ L is transformed to baryon number by non-perturbative B-L conserving (but B+L violating) sphaleron processes in the SM [SC3]

T. Schwetz (KIT) Neutrino physics IV 43 / 52

Seesaw Lagrangian (3 N_R):

$$\mathcal{L}_{\rm seesaw} = -\bar{L}\lambda_e\phi e_R - \bar{L}\lambda_\nu\tilde{\phi}N_R + \frac{1}{2}N_R^TC^{-1}M_R^*N_R + \mathrm{h.c.}$$

contains 21 physical parameters: 15 moduli and 6 phases

- ▶ make M_R and λ_e diagonal and positive \rightarrow 6
- ▶ left with complex $\lambda_{\nu} = V^{\dagger} \hat{\lambda} U$ V and U three complex angles each $\rightarrow 3 \times 3$ moduli + 6 phases

Branco, Lavoura, Rebelo, PLB 180 (1986) 264 Santamaria, PLB 305 (1993) 90 [hep-ph/9302301]

Seesaw Lagrangian (3 N_R):

$$\mathcal{L}_{\rm seesaw} = -\bar{L}\lambda_e\phi e_R - \bar{L}\lambda_\nu\tilde{\phi}N_R + \frac{1}{2}N_R^TC^{-1}M_R^*N_R + \text{h.c.}$$

contains 21 physical parameters: 15 moduli and 6 phases

observable quantities at low energy:

- ▶ 3 charged lepton masses
- ▶ neutrino oscillations: $2 \Delta m^2$, 3 angles, 1 phase
- absolute neutrino mass: 1
- ▶ Majorana phase in neutrinoless DBD: 1 (2) phase
- \rightarrow 6 masses, 3 angles 2 (3) phases
- \rightarrow 3 masses (N_R), 3 angles and 4 (3) phases remain unmeasurable

Seesaw Lagrangian (3 N_R):

$$\mathcal{L}_{\text{seesaw}} = -\bar{L}\lambda_{e}\phi e_{R} - \bar{L}\lambda_{\nu}\tilde{\phi}N_{R} + \frac{1}{2}N_{R}^{T}C^{-1}M_{R}^{*}N_{R} + \text{h.c.}$$

contains 21 physical parameters: 15 moduli and 6 phases

- ▶ the CP asymmetry in Leptogenesis depends in general on a complicated combination of parameters involving both, low and high energy parameters
- ▶ no direct connection between CPV in oscillations and Leptongenesis can be established in general (may be possible in certain models, including models different from type-I with 3 N_R)

BUT: low energy Dirac and/or Majorana CPV can be *sufficient* to generate the required CP asymmetry

- "classic" mass range $10^9 \text{ GeV} \lesssim M_N \lesssim 10^{12} \text{ GeV}$: successful LG possible from only Dirac or Majorana LE CPV phases
- outside this mass range fine tuning is needed

K. Moffat, S. Pascoli, S. Petcov, J. Turner [arXiv:1809.08251]

T. Schwetz (KIT) Neutrino physics IV 45 / 52

Leptogenesis – summary

- (+) elegant mechanism to explain baryon asymmetry
- (+) links neutrino physics to existence of matter
- many versions (with or without lepton number violation, for all types of seesaw, Dirac Leptogensis, TeV-scale Leptogenesis, ...)
- - observe neutrinoless double beta decay (Majorana nature),

 - none is necessary for successful Leptogenesis, but they can be sufficient!

T. Schwetz (KIT) Neutrino physics IV 46 / 52

Leptogenesis – summary

- (+) elegant mechanism to explain baryon asymmetry
- (+) links neutrino physics to existence of matter
- (+) many versions (with or without lepton number violation, for all types of seesaw, Dirac Leptogensis, TeV-scale Leptogenesis, . . .)
- (-) in general can neither be tested nor excluded by low-energy experiments at best we can obtain "circumstantial evidence":
 - observe neutrinoless double beta decay (Majorana nature),
 - observe CP violation in oscillations,
 - ▶ none is necessary for successful Leptogenesis, but they can be sufficient!

Review articles on Leptogenesis:

Buchmuller, DiBari, Plumacher, Annals Phys.**315**, 305 (2005) [hep-ph/0401240] S. Davidson, E. Nardi and Y. Nir, Phys. Rept. **466** (2008) 105 [arXiv:0802.2962]

Leptogenesis – summary

- (+) elegant mechanism to explain baryon asymmetry
- (+) links neutrino physics to existence of matter
- (+) many versions (with or without lepton number violation, for all types of seesaw, Dirac Leptogensis, TeV-scale Leptogenesis, . . .)
- (-) in general can neither be tested nor excluded by low-energy experiments at best we can obtain "circumstantial evidence":
 - observe neutrinoless double beta decay (Majorana nature),
 - observe CP violation in oscillations,
 - ▶ none is necessary for successful Leptogenesis, but they can be sufficient!

Review articles on Leptogenesis:

Buchmuller, DiBari, Plumacher, Annals Phys. **315**, 305 (2005) [hep-ph/0401240] S. Davidson, E. Nardi and Y. Nir, Phys. Rept. **466** (2008) 105 [arXiv:0802.2962]

Outline

Giving mass to neutrinos Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

Lepton flavour violation

- lacktriangle Neutrino oscillations imply violation of lepton flavour, e.g.: $u_{\mu}
 ightarrow
 u_{e}$
- ► Can we see also LFV in charged leptons?

$$\begin{array}{l} \mu^{\pm} \rightarrow \mathrm{e}^{\pm} \gamma \\ \tau^{\pm} \rightarrow \mu^{\pm} \gamma \\ \mu^{+} \rightarrow \mathrm{e}^{+} \mathrm{e}^{+} \mathrm{e}^{-} \\ \mu^{-} + \mathrm{N} \rightarrow \mathrm{e}^{-} + \mathrm{N} \end{array}$$

rich experimental program with sensitivities in the 10^{-13} to 10^{-18} range

Can we see also LFV in charged leptons?

Yes, BUT: $\mu^{\pm} \rightarrow e^{\pm} \gamma$ in the SM $+ \nu$ mass:

$$\mathsf{Br}(\mu o e \gamma) = rac{3lpha}{32\pi} \left| \sum_i U_{\mu i}^* U_{ei} rac{m_{
u_i}^2}{m_W^2} \right|^2 \lesssim 10^{-54}$$

- ightharpoonup unobservably small (present limits: $\sim 10^{-13}$)
- lacktriangle observation of $\mu o e \gamma$ implies new physics beyond neutrino mass

$\mu \rightarrow e \gamma$ and new physics generically one expects

$$\mathsf{Br}(\mu o e \gamma) \sim 10^{-10} \left(rac{\mathsf{TeV}}{\mathsf{\Lambda}_{\mathrm{LFV}}}
ight)^4 \left(rac{ heta_{e\mu}}{10^{-2}}
ight)^2$$

- we are sensitive to new physics in the range 1 to 1000 TeV (TeV scale SUSY, TeV scale neutrino masses,...)
- ► cLFV does NOT probe neutrino Majorana mass (conserves lepton number) Majorana mass: dim-5 operator, LFV: dim-6 operators, e.g.

$$\mathcal{L}_{\mathrm{LFV}} = rac{1}{\Lambda_{\mathrm{LFV}}^2} (\overline{\mu}e) (\overline{e}e) + rac{1}{\Lambda_{\mathrm{LFV}}^2} (\overline{\mu}e) (\overline{q}q)$$

► cLFV is sensitive to new physics which may or may not be related to the mechanism for neutrino mass → extremely valuable information on BSM

Outline

Giving mass to neutrinos Weinberg operator

Right-handed neutrinos
Dirac vs Majorana neutrinos
Type-I Seesaw

Extending the scalar sector of the SM Higgs-triplet / Type-II Seesaw Radiative neutrino mass models

Leptogenesis

Lepton flavour violation

Conclusions

51 / 52

Conclusions - neutrinos and BSM

- neutrino mass established by oscillations
- identifying the mechanism for neutrino mass is one of the most important open questions in particle physics
- ... this may be a difficult task (the answer could be elusive forever)
- does not point to a specific energy scale of new physics
- hope for some signatures (neutrinoless double-beta decay, charged-lepton flavour violation, lepton-number violation at LHC)!